Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objective

The NLRP3 inflammasome mediates a range of inflammatory responses that are associated with an increasing number of pathological mechanisms. Over-activation of NLRP3 can exacerbate many diseases. However, NLRP3 antagonists have significant therapeutic potential. Moreover, NLRP3 plays an important role in limiting the growth and spread of some tumors, and NLRP3 agonists also have clinical value. MCC950 and BMS986299 are an antagonist and agonist of NLRP3, respectively. In light of the important clinical applications of NLRP3, especially for NLRP3 inhibitors, a computational method was used to investigate the interaction modes of MCC950 and BMS986299 with NLRP3 in order to design and develop more potent NLRP3 regulators.

Methods

In this study, the conformational behaviors of NLRP3 bound to the antagonist MCC950 in an inactive state and the agonist BMS986299 in an active state were investigated using 200 ns equilibrium all-atom molecular dynamics (MD) simulations, and then the analyses of the MD trajectories (RMSD, Rg, RMSF, SASA, PCA, and DCCM) were carried out to explore the mechanism of the antagonist and agonist on NLRP3 in the two different states.

Results

The RMSD, RMSF, Rg, SASA, and PCA analyses indicated that NLRP3 was more dispersive and less energetically stable in the active state than in the inactive state and that MCC950 significantly reduced the fluctuations of the interactive residues while BMS986299 did not. The antagonist MCC950 interacted with residues mainly in the NBD, HD1, WHD, and HD2 domains of NLRP3, whereas the agonist BMS986299 mainly in the NBD and WHD of NLRP3. Additionally, both compounds did not interact with residues located in the FISNA domain. The conformation of the FISNA domain appeared to change significantly when NLRP3 was translated from an inactive state to an active state.

Conclusion

The antagonist may interact with residues mainly in the NBD, HD1, WHD, and HD2 domains, and the agonist may interact in the NBD and WHD domains. Our study provided new insights into the development of NLRP3 regulators.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099313497240514072445
2025-05-24
2025-12-05
Loading full text...

Full text loading...

References

  1. SharmaD. KannegantiT.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.J. Cell Biol.2016213661762910.1083/jcb.201602089 27325789
    [Google Scholar]
  2. LamkanfiM. DixitV.M. Mechanisms and functions of inflammasomes.Cell201415751013102210.1016/j.cell.2014.04.007 24855941
    [Google Scholar]
  3. BrozP. DixitV.M. Inflammasomes: Mechanism of assembly, regulation and signalling.Nat. Rev. Immunol.201616740742010.1038/nri.2016.58 27291964
    [Google Scholar]
  4. ToldoS. AbbateA. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases.Nat. Rev. Cardiol.20233362 37923829
    [Google Scholar]
  5. CollR.C. SchroderK. PelegrínP. NLRP3 and pyroptosis blockers for treating inflammatory diseases.Trends Pharmacol. Sci.202243865366810.1016/j.tips.2022.04.003 35513901
    [Google Scholar]
  6. Hafner-BratkovičI. NLRP3 is its own gatekeeper: A group hug of NLRP3 monomers controls inflammation.Trends Biochem. Sci.202247863563710.1016/j.tibs.2022.03.014 35382945
    [Google Scholar]
  7. MaQ. Pharmacological inhibition of the NLRP3 inflammasome: Structure, molecular activation, and inhibitor-NLRP3 interaction.Pharmacol. Rev.202375348752010.1124/pharmrev.122.000629 36669831
    [Google Scholar]
  8. AndreevaL. DavidL. RawsonS. ShenC. PasrichaT. PelegrinP. WuH. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation.Cell20211842662996312.e2210.1016/j.cell.2021.11.011 34861190
    [Google Scholar]
  9. ChenJ. ChenZ.J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation.Nature20185647734717610.1038/s41586‑018‑0761‑3 30487600
    [Google Scholar]
  10. SharifH. WangL. WangW.L. MagupalliV.G. AndreevaL. QiaoQ. HauensteinA.V. WuZ. NúñezG. MaoY. WuH. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome.Nature2019570776133834310.1038/s41586‑019‑1295‑z 31189953
    [Google Scholar]
  11. HungS.C. KeL.C. LienT.S. HuangH.S. SunD.S. ChengC.L. ChangH.H. Nanodiamond-induced thrombocytopenia in mice involves p-selectin-dependent NLRP3 inflammasome-mediated platelet aggregation, pyroptosis and apoptosis.Front. Immunol.20221380668610.3389/fimmu.2022.806686 35444640
    [Google Scholar]
  12. DalbethN. GoslingA.L. GaffoA. AbhishekA. Gout. Lancet2021397102871843185510.1016/S0140‑6736(21)00569‑9 33798500
    [Google Scholar]
  13. LiuY. WangJ. LiJ. Role of NLRP3 in the pathogenesis and treatment of gout arthritis.Front. Immunol.202314113782210.3389/fimmu.2023.1137822 37051231
    [Google Scholar]
  14. KopalliS.R. KangT.B. LeeK.H. KoppulaS. NLRP3 inflammasome activation inhibitors in inflammation-associated cancer immunotherapy: An update on the recent patents.Recent Patents Anticancer Drug Discov.2018131106117 29076433
    [Google Scholar]
  15. KimS.R. LeeS.G. KimS.H. KimJ.H. ChoiE. ChoW. RimJ.H. HwangI. LeeC.J. LeeM. OhC.M. JeonJ.Y. GeeH.Y. KimJ.H. LeeB.W. KangE.S. ChaB.S. LeeM.S. YuJ.W. ChoJ.W. KimJ.S. LeeY. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease.Nat. Commun.2020111212710.1038/s41467‑020‑15983‑6 32358544
    [Google Scholar]
  16. IsmailaniU.S. BuchlerA. MacMullinN. AbdirahmanF. AdiM. RotsteinB.H. Synthesis and evaluation of [11C]MCC950 for imaging NLRP3-Mediated inflammation in atherosclerosis.Mol. Pharm.20232031709171610.1021/acs.molpharmaceut.2c00915 36735877
    [Google Scholar]
  17. YuanZ. YuD. GouT. TangG. GuoC. ShiJ. Research progress of NLRP3 inflammasome and its inhibitors with aging diseases.Eur. J. Pharmacol.202395717593110.1016/j.ejphar.2023.175931 37495038
    [Google Scholar]
  18. SharmaB. SatijaG. MadanA. GargM. AlamM.M. ShaquiquzzamanM. KhannaS. TiwariP. ParvezS. IqubalA. HaqueS.E. KhanM.A. Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidate for Alzheimer’s disease: A review of mechanism of activation, regulation, and inhibition.Inflammation2023461568710.1007/s10753‑022‑01730‑0 36006570
    [Google Scholar]
  19. PagliaroP. PennaC. Inhibitors of NLRP3 inflammasome in ischemic heart disease: Focus on functional and redox aspects.Antioxidants2023127139610.3390/antiox12071396 37507935
    [Google Scholar]
  20. YangY. WangH. KouadirM. SongH. ShiF. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors.Cell Death Dis.201910212810.1038/s41419‑019‑1413‑8 30755589
    [Google Scholar]
  21. El-SharkawyL.Y. BroughD. FreemanS. Inhibiting the NLRP3 Inflammasome.Molecules20202523553310.3390/molecules25235533 33255820
    [Google Scholar]
  22. KeulerT. FerberD. MarleauxM. GeyerM. GütschowM. Structure-stability relationship of NLRP3 inflammasome-inhibiting sulfonylureas.ACS Omega2022798158816210.1021/acsomega.2c00125 35284735
    [Google Scholar]
  23. OhbaY. AdachiK. FurukawaT. NishimaruT. SakuraiK. MasuoR. InamiT. OritaT. AkaiS. AdachiT. UsuiK. HamadaY. MoriM. KurimotoT. WakashimaT. AkiyamaY. MiyazakiS. NojiS. Discovery of novel NLRP3 inflammasome inhibitors composed of an oxazole scaffold bearing an acylsulfamide.ACS Med. Chem. Lett.202314121833183810.1021/acsmedchemlett.3c00433 38116417
    [Google Scholar]
  24. ThapaP. UpadhyayS.P. SinghV. BoinpellyV.C. ZhouJ. JohnsonD.K. GurungP. LeeE.S. SharmaR. SharmaM. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors.Eur. J. Med. Chem. Rep.2023710010010.1016/j.ejmcr.2022.100100 37033416
    [Google Scholar]
  25. YeT. TaoW. ChenX. JiangC. DiB. XuL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors.Cytokine Growth Factor Rev.20237411310.1016/j.cytogfr.2023.09.007 37821254
    [Google Scholar]
  26. ZhangX.X. DiaoL.Z. ChenL.Z. MaD. WangY.M. JiangH. RuanB.F. LiuX.H. Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis.Eur. J. Med. Chem.202223611435710.1016/j.ejmech.2022.114357 35428012
    [Google Scholar]
  27. HarrisonD. BockM.G. DoedensJ.R. GabelC.A. HollowayM.K. LewisA. ScanlonJ. SharpeA. SimpsonI.D. SmolakP. WishartG. WattA.P. Discovery and optimization of triazolopyrimidinone derivatives as selective NLRP3 inflammasome inhibitors.ACS Med. Chem. Lett.20221381321132810.1021/acsmedchemlett.2c00242 35978696
    [Google Scholar]
  28. CollR.C. HillJ.R. DayC.J. ZamoshnikovaA. BoucherD. MasseyN.L. ChittyJ.L. FraserJ.A. JenningsM.P. RobertsonA.A.B. SchroderK. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition.Nat. Chem. Biol.201915655655910.1038/s41589‑019‑0277‑7 31086327
    [Google Scholar]
  29. WuD. ChenY. SunY. GaoQ. LiH. YangZ. WangY. JiangX. YuB. Target of MCC950 in inhibition of NLRP3 inflammasome activation: A literature review.Inflammation2020431172310.1007/s10753‑019‑01098‑8 31646445
    [Google Scholar]
  30. LiH. GuanY. LiangB. DingP. HouX. WeiW. MaY. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome.Eur. J. Pharmacol.202292817509110.1016/j.ejphar.2022.175091 35714692
    [Google Scholar]
  31. SandallC.F. ZiehrB.K. MacDonaldJ.A. ATP-binding and hydrolysis in inflammasome activation.Molecules20202519457210.3390/molecules25194572 33036374
    [Google Scholar]
  32. KennedyC.R. Goya GrocinA. KovačičT. SinghR. WardJ.A. ShenoyA.R. TateE.W. A probe for NLRP3 inflammasome inhibitor MCC950 identifies carbonic anhydrase 2 as a novel target.ACS Chem. Biol.202116698299010.1021/acschembio.1c00218 34003636
    [Google Scholar]
  33. HamarshehS. ZeiserR. NLRP3 inflammasome activation in cancer: A double-edged sword.Front. Immunol.202011144410.3389/fimmu.2020.01444 32733479
    [Google Scholar]
  34. JuM. BiJ. WeiQ. JiangL. GuanQ. ZhangM. SongX. ChenT. FanJ. LiX. WeiM. ZhaoL. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer.Brief. Bioinform.2021224bbaa34510.1093/bib/bbaa345 33212483
    [Google Scholar]
  35. BarsoumianH.B. HeK. HsuE. BertoletG. SezenD. HuY. RiadT.S. CortezM.A. WelshJ.W. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model.Cancer Immunol. Immunother.20237293003301210.1007/s00262‑023‑03471‑x 37289257
    [Google Scholar]
  36. GlickG. ShomirG. WilliamrR. JamesQ.E. DanielO.M. Substituted imidazo-quinolines as NLRP3 modulators.WO Patent 2018152396A12018
    [Google Scholar]
  37. NelsonB.E. ShethR. KellyK. ParkH. PatelS.P. McKinleyD. O’BrienS. Parra PalauJ.L. Piha-PaulS.A. First in human phase I study of BMS-986299 as monotherapy and combined with nivolumab and ipilimumab in advanced solid tumors.J. Clin. Oncol.20234116_supple1458410.1200/JCO.2023.41.16_suppl.e14584
    [Google Scholar]
  38. BiC. ChadwickJ. DaviesM.L. DelMonteA.J. GengP. GlaceA.W. GreenR.A. GurakJ.A.Jr HaleyM.W. HeB.L. InankurB. JamisonC.R. JoeC.L. KolotuchinS. LinD. LouS. NyeJ. OrtizA. PurdumG.E. RossoV.W. ShahM. SimmonsE.M. StevensJ.M. StrotmanN.A. TanY. ZhangL. Coupling-condensation strategy for the convergent synthesis of an imidazole-fused 2-aminoquinoline NLRP3 agonist.J. Org. Chem.202388138439410.1021/acs.joc.2c02395 36516991
    [Google Scholar]
  39. HochheiserI.V. PilslM. HageluekenG. MoeckingJ. MarleauxM. BrinkschulteR. LatzE. EngelC. GeyerM. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3.Nature2022604790418418910.1038/s41586‑022‑04467‑w 35114687
    [Google Scholar]
  40. XiaoL. MagupalliV.G. WuH. Cryo-EM structures of the active NLRP3 inflammasome disc.Nature2023613794459560010.1038/s41586‑022‑05570‑8 36442502
    [Google Scholar]
  41. DekkerC. MattesH. WrightM. BoettcherA. HinnigerA. HughesN. Kapps-FouthierS. EderJ. ErbelP. StieflN. MackayA. FaradyC.J. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition.J. Mol. Biol.20214332416730910.1016/j.jmb.2021.167309 34687713
    [Google Scholar]
  42. CasaliE. SerapianS.A. GianquintoE. CastelliM. BertinariaM. SpyrakisF. ColomboG. NLRP3 monomer functional dynamics: From the effects of allosteric binding to implications for drug design.Int. J. Biol. Macromol.202324612560910.1016/j.ijbiomac.2023.125609 37394218
    [Google Scholar]
  43. El-SayedS. FreemanS. BryceR.A. Probing the effect of NEK7 and cofactor interactions on dynamics of NLRP3 monomer using molecular simulation.Protein Sci.20223110e442010.1002/pro.4420 36173167
    [Google Scholar]
  44. Santos NascimentoI.J.D. AquionT.M. Silva-JúniorE.F. Docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors.Recent Adv. Inflamm. Allergy Drug Discov.2022158086
    [Google Scholar]
  45. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  46. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky427 29788355
    [Google Scholar]
  47. NguyenN.T. NguyenT.H. PhamT.N.H. HuyN.T. BayM.V. PhamM.Q. NamP.C. VuV.V. NgoS.T. Autodock Vina adopts more accurate binding poses but Autodock4 forms better binding affinity.J. Chem. Inf. Model.202060120421110.1021/acs.jcim.9b00778 31887035
    [Google Scholar]
  48. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  49. LarssonP. KneiszlR.C. MarklundE.G. MKVSITES: A tool for creating GROMACS virtual sites parameters to increase performance in all‐atom molecular dynamics simulations.J. Comput. Chem.202041161564156910.1002/jcc.26198 32282082
    [Google Scholar]
  50. KumariR. KumarR. LynnA. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  51. ZhouL. MaY.C. TangX. LiW.Y. MaY. WangR.L. Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis.J. Biomol. Struct. Dyn.2021391456210.1080/07391102.2019.1705913 31842717
    [Google Scholar]
  52. ZhouY. ZhangN. ChenW. ZhaoL. ZhongR. Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: Comparative molecular dynamics simulation studies.Phys. Chem. Chem. Phys.201618139202921010.1039/C5CP06276D 26974875
    [Google Scholar]
  53. KumariP. PoddarR. A comparative multivariate analysis of nitrilase enzymes: An ensemble based computational approach.Comput. Biol. Chem.20198310709510.1016/j.compbiolchem.2019.107095 31442709
    [Google Scholar]
  54. GrantB.J. RodriguesA.P.C. ElSawyK.M. McCammonJ.A. CavesL.S.D. Bio3d: an R package for the comparative analysis of protein structures.Bioinformatics200622212695269610.1093/bioinformatics/btl461 16940322
    [Google Scholar]
  55. ChillemiG. D’AnnessaI. FioraniP. LosassoC. BenedettiP. DesideriA. Thr729 in human topoisomerase I modulates anti-cancer drug resistance by altering protein domain communications as suggested by molecular dynamics simulations.Nucleic Acids Res.200836175645565110.1093/nar/gkn558 18765473
    [Google Scholar]
  56. BrüschweilerR. Efficient RMSD measures for the comparison of two molecular ensembles.Proteins2003501263410.1002/prot.10250 12471596
    [Google Scholar]
  57. SainiG. DalalV. SavitaB.K. SharmaN. KumarP. SharmaA.K. Molecular docking and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus.J. Mol. Graph. Model.20199232934010.1016/j.jmgm.2019.08.012 31446203
    [Google Scholar]
  58. KorthM. Empirical hydrogen-bond potential functions--an old hat reconditioned.ChemPhysChem201112173131314210.1002/cphc.201100540 22038888
    [Google Scholar]
  59. YamamotoE. AkimotoT. MitsutakeA. MetzlerR. Universal relation between instantaneous diffusivity and radius of gyration of proteins in aqueous solution.Phys. Rev. Lett.20211261212810110.1103/PhysRevLett.126.128101 33834804
    [Google Scholar]
  60. SunH. DuanL. ChenF. LiuH. WangZ. PanP. ZhuF. ZhangJ.Z.H. HouT. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches.Phys. Chem. Chem. Phys.20182021144501446010.1039/C7CP07623A 29785435
    [Google Scholar]
  61. YuH. DalbyP.A. Coupled molecular dynamics mediate long- and shortrange epistasis between mutations that affect stability and aggregation kinetics.PNAS201811547E11043E11052
    [Google Scholar]
/content/journals/cad/10.2174/0115734099313497240514072445
Loading
/content/journals/cad/10.2174/0115734099313497240514072445
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BMS986299; inflammation; MCC950; molecular dynamics simulation; NLRP3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test