Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Aims

The machine learning-based QSAR modeling procedure, molecular generations, and molecular dynamic simulations were applied to virtually screen the DNA polymerase theta inhibitors.

Background

The DNA polymerase theta (Polθ or POLQ) is an attractive target for treatments of homologous recombination deficient (such as BRCA deficient) cancers. There are no approved drugs for targeting POLQ, and only one inhibitor is in Phase II clinical trials; thus, it is necessary to develop novel POLQ inhibitors.

Objectives

To build machine learning models that predict the bioactivities of POLQ inhibitors. To build molecular generation models that generate diverse molecules. To virtually screen the generated molecules by the machine learning models. To analyze the binding modes of the screening results by molecular dynamic simulations.

Methods

In the present work, 325 inhibitors with POLQ polymerase domain bioactivities were collected. Two machine learning methods, random forest and deep neural network, were used for building the ligand- and structure-based quantitative structure-activity relationship (QSAR) models. The substructure replacement-based method and transfer learning-based deep recurrent neural network method were used for molecular generations. Molecular docking and consensus QSAR models were carried out for virtual screening. The molecular dynamic simulations and MM/GBSA binding free energy calculation and decomposition were used to further analyze the screening results.

Results

The MCC values of the best ligand- and structure-based consensus QSAR models reached 0.651 and 0.361 for the test set, respectively. The machine learning-based docking scores had better-predicted ability to distinguish the highly and weakly active poses than the original docking scores. The 96490 molecules were generated by both molecular generation methods, and 10 molecules were retained by virtual screening. Four favorable interactions were concluded by molecular dynamic simulations.

Conclusion

We hope that the screening results and the binding modes are helpful for designing the highly active POLQ polymerase inhibitors and the models of the molecular design workflow can be used as reliable tools for drug design.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099305142240508051830
2024-05-22
2025-12-05
Loading full text...

Full text loading...

References

  1. ChenX.S. PomerantzR.T. DNA polymerase θ: A cancer drug target with reverse transcriptase activity.Genes (Basel)2021128114610.3390/genes12081146 34440316
    [Google Scholar]
  2. DrzewieckaM. Barszczewska-PietraszekG. CzarnyP. SkorskiT. ŚliwińskiT. Synthetic lethality targeting Polθ.Genes (Basel)2022136110110.3390/genes13061101 35741863
    [Google Scholar]
  3. ZatreanuD. RobinsonH.M.R. AlkhatibO. BoursierM. FinchH. GeoL. GrandeD. GrinkevichV. HealdR.A. LangdonS. MajithiyaJ. McWhirterC. MartinN.M.B. MooreS. NevesJ. RajendraE. RanzaniM. SchaedlerT. StockleyM. WigginsK. BroughR. SridharS. GulatiA. ShaoN. BadderL.M. NovoD. KnightE.G. MarlowR. HaiderS. CallenE. HewittG. SchimmelJ. PrevoR. AlliC. FerdinandA. BellC. BlencoweP. BotC. CalderM. CharlesM. CurryJ. EkwuruT. EwingsK. KrajewskiW. MacDonaldE. McCarronH. PangL. PedderC. RigoreauL. SwarbrickM. WheatleyE. WillisS. WongA.C. NussenzweigA. TijstermanM. TuttA. BoultonS.J. HigginsG.S. PettittS.J. SmithG.C.M. LordC.J. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.Nat. Commun.2021121363610.1038/s41467‑021‑23463‑8 34140467
    [Google Scholar]
  4. ZhouJ. GelotC. PantelidouC. LiA. YücelH. DavisR.E. FärkkiläA. KochupurakkalB. SyedA. ShapiroG.I. TainerJ.A. BlaggB.S.J. CeccaldiR. D’AndreaA.D. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors.Nat. Can.20212659861010.1038/s43018‑021‑00203‑x 34179826
    [Google Scholar]
  5. ChandramoulyG. ZhaoJ. McDevittS. RusanovT. HoangT. BorisonnikN. TreddinickT. LopezcoloradoF. W. KentT. SiddiqueL. A. MallonJ. HuhnJ. ShodaZ. KashkinaE. BrambatiA. StarkJ. M. ChenX. S. PomerantzR. T. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair.Sci Adv.2021724eabf177110.1126/sciadv.abf1771
    [Google Scholar]
  6. StockleyM.L. FerdinandA. BenedettiG. BlencoweP. BoydS.M. CalderM. CharlesM.D. EdwardesL.V. EkwuruT. FinchH. GalbiatiA. GeoL. GrandeD. GrinkevichV. HollidayN.D. KrajewskiW.W. MacDonaldE. MajithiyaJ.B. McCarronH. McWhirterC.L. PatelV. PedderC. RajendraE. RanzaniM. RigoreauL.J.M. RobinsonH.M.R. SchaedlerT. SirinaJ. SmithG.C.M. SwarbrickM.E. TurnbullA.P. WillisS. HealdR.A. Discovery, characterization, and structure-based optimization of small-molecule in vitro and in vivo probes for human DNA polymerase theta.J. Med. Chem.20226520138791389110.1021/acs.jmedchem.2c01142 36200480
    [Google Scholar]
  7. BubenikM. MaderP. MochirianP. ValléeF. ClarkJ. TruchonJ.F. PerrymanA.L. PauV. KurinovI. ZahnK.E. LeclaireM.E. PappR. MathieuM.C. HamelM. DuffyN.M. GodboutC. Casas-SelvesM. FalgueyretJ.P. BaruahP.S. NicolasO. StoccoR. PoirierH. MartinoG. FortinA.B. RoulstonA. ChefsonA. DorichS. St-OngeM. PatelP. PellerinC. CiblatS. PinterT. BarabéF. El BakkouriM. ParikhP. GervaisC. SfeirA. MamaneY. MorrisS.J. BlackW.C. SicheriF. GallantM. Identification of RP-6685, an Orally Bioavailable Compound that Inhibits the DNA Polymerase Activity of Polθ.J. Med. Chem.20226519131981321510.1021/acs.jmedchem.2c00998 36126059
    [Google Scholar]
  8. BlencoweP. CharlesM. EkwuruT. FinchH. HealdR. McCarronH. StockleyM. Heterocyclic compounds for use in the treatment of cancer.WO Patent 2021028643A12021
    [Google Scholar]
  9. BlencoweP. CharlesM. EkwuruT. FinchH. McCarronH. HealdR. StockleyM. Deuterated compounds for use in the treatment of cancer.WO Patent 2021028670A12021
    [Google Scholar]
  10. HealdR. StockleyM. CharlesM. DNA polymerase theta inhibitors.WO Patent 2021123785A12021
    [Google Scholar]
  11. PismataroM.C. AstolfiA. BarrecaM.L. PacettiM. SchenoneS. BandieraT. CarboneA. MassariS. Small molecules targeting DNA Polymerase Theta (POLθ) as promising synthetic lethal agents for precision cancer therapy.J. Med. Chem.202366106498652210.1021/acs.jmedchem.2c02101 37134182
    [Google Scholar]
  12. BrownN. ErtlP. LewisR. LukschT. RekerD. SchneiderN. Artificial intelligence in chemistry and drug design.J. Comput. Aided Mol. Des.202034770971510.1007/s10822‑020‑00317‑x 32468207
    [Google Scholar]
  13. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  14. PillaiN. DasguptaA. SudsakornS. FretlandJ. MavroudisP.D. Machine learning guided early drug discovery of small molecules.Drug Discov. Today20222782209221510.1016/j.drudis.2022.03.017 35364270
    [Google Scholar]
  15. SchneiderP. WaltersW.P. PlowrightA.T. SierokaN. ListgartenJ. GoodnowR.A.Jr FisherJ. JansenJ.M. DucaJ.S. RushT.S. ZentgrafM. HillJ.E. KrutoholowE. KohlerM. BlaneyJ. FunatsuK. LuebkemannC. SchneiderG. Rethinking drug design in the artificial intelligence era.Nat. Rev. Drug Discov.202019535336410.1038/s41573‑019‑0050‑3 31801986
    [Google Scholar]
  16. SharmaH. SharmaP. UrquizaU. ChastainL.R. IhnatM.A. Exploration of a large virtual chemical space: Identification of potent inhibitors of lactate dehydrogenase-a against pancreatic cancer.J. Chem. Inf. Model.20236331028104310.1021/acs.jcim.2c01544 36646658
    [Google Scholar]
  17. StasiulewiczA. LesniakA. Bujalska-ZadrożnyM. PawińskiT. SulkowskaJ.I. Identification of novel CB2 ligands through virtual screening and in vitro evaluation.J. Chem. Inf. Model.20236331012102710.1021/acs.jcim.2c01503 36693026
    [Google Scholar]
  18. TanX. LiC. YangR. ZhaoS. LiF. LiX. ChenL. WanX. LiuX. YangT. TongX. XuT. CuiR. JiangH. ZhangS. LiuH. ZhengM. Discovery of pyrazolo[3,4- d]pyridazinone derivatives as selective DDR1 inhibitors via deep learning based design, synthesis, and biological evaluation.J. Med. Chem.202265110311910.1021/acs.jmedchem.1c01205 34821145
    [Google Scholar]
  19. CherkasovA. MuratovE.N. FourchesD. VarnekA. BaskinI.I. CroninM. DeardenJ. GramaticaP. MartinY.C. TodeschiniR. ConsonniV. Kuz’minV.E. CramerR. BenigniR. YangC. RathmanJ. TerflothL. GasteigerJ. RichardA. TropshaA. QSAR modeling: Where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm4004285 24351051
    [Google Scholar]
  20. HuoD. WangS. KongY. QinZ. YanA. Discovery of Novel Epidermal Growth Factor Receptor (EGFR) inhibitors using computational approaches.J. Chem. Inf. Model.202262215149516410.1021/acs.jcim.1c00884 34931847
    [Google Scholar]
  21. KongY. BenderA. YanA. Identification of Novel Aurora Kinase A (AURKA) inhibitors via hierarchical ligand-based virtual screening.J. Chem. Inf. Model.2018581364710.1021/acs.jcim.7b00300 29202231
    [Google Scholar]
  22. ZhangL. FourchesD. SedykhA. ZhuH. GolbraikhA. EkinsS. ClarkJ. ConnellyM.C. SigalM. HodgesD. GuiguemdeA. GuyR.K. TropshaA. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening.J. Chem. Inf. Model.201353247549210.1021/ci300421n 23252936
    [Google Scholar]
  23. KarunakarP. Virtual screening of native variants of focal adhesion kinase - A QSAR, molecular docking, and dynamic simulation study.Lett. Drug Des. Discov.202421225426910.2174/1570180819666220815150525
    [Google Scholar]
  24. MittalR. SharmaS. MittalA. KumarS. KushwahA.S. Virtual screening, molecular docking, and physiochemical analysis of novel 1,3-diphenyl-2-propene-1-one as dual COX-2/5-LOX inhibitors.Lett. Drug Des. Discov.202421227028810.2174/1570180819666220523093435
    [Google Scholar]
  25. NandiS. KumarM. SaxenaA.K. QSAR of SARS-CoV-2 main protease inhibitors utilizing theoretical molecular descriptors.Lett. Drug Des. Discov.202421111613210.2174/1570180820666221214151614
    [Google Scholar]
  26. dos Santos CorreiaP.R. de SouzaA.H.D. ChaparroA.R. Tenorio BarajasA.Y. PortoR.S. Molecular docking, ADMET analysis and Molecular Dynamics (MD) simulation to identify synthetic isoquinolines as potential inhibitors of SARS-CoV-2 MPRO.Curr. Computeraided Drug Des.202319539140410.2174/1573409919666230123150013
    [Google Scholar]
  27. PulikkottilA.A. KumarA. JangidK. KumarV. JaitakV. Structure-based virtual screening and molecular dynamic simulation approach for the identification of terpenoids as potential DPP-4 inhibitors.Curr. Computeraided Drug Des.202420441642910.2174/1573409919666230515160502 37190809
    [Google Scholar]
  28. FerreiraL.L.G. AndricopuloA.D. ADMET modeling approaches in drug discovery.Drug Discov. Today20192451157116510.1016/j.drudis.2019.03.015 30890362
    [Google Scholar]
  29. GöllerA.H. KuhnkeL. MontanariF. BoninA. SchneckenerS. ter LaakA. WichardJ. LobellM. HillischA. Bayer’s in silico ADMET platform: A journey of machine learning over the past two decades.Drug Discov. Today20202591702170910.1016/j.drudis.2020.07.001 32652309
    [Google Scholar]
  30. MueggeI. BergnerA. KrieglJ.M. Computer-aided drug design at Boehringer Ingelheim.J. Comput. Aided Mol. Des.201731327528510.1007/s10822‑016‑9975‑3 27650777
    [Google Scholar]
  31. AdeshinaY.O. DeedsE.J. KaranicolasJ. Machine learning classification can reduce false positives in structure-based virtual screening.Proc. Natl. Acad. Sci. USA202011731184771848810.1073/pnas.2000585117 32669436
    [Google Scholar]
  32. MorrisC.J. SternJ.A. StarkB. ChristophersonM. Della CorteD. MILCDock: Machine learning enhanced consensus docking for virtual screening in drug discovery.J. Chem. Inf. Model.202262225342535010.1021/acs.jcim.2c00705 36342217
    [Google Scholar]
  33. SauerS. MatterH. HesslerG. GrebnerC. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods.Front Chem.202210101250710.3389/fchem.2022.1012507 36339033
    [Google Scholar]
  34. WuZ. JiangD. WangJ. HsiehC.Y. CaoD. HouT. Mining toxicity information from large amounts of toxicity data.J. Med. Chem.202164106924693610.1021/acs.jmedchem.1c00421 33961429
    [Google Scholar]
  35. WuY. HuoD. ChenG. YanA. SAR and QSAR research on tyrosinase inhibitors using machine learning methods.SAR QSAR Environ. Res.20213228511010.1080/1062936X.2020.1862297 33517778
    [Google Scholar]
  36. QinZ. XiY. ZhangS. TuG. YanA. Classification of cyclooxygenase-2 inhibitors using support vector machine and random forest methods.J. Chem. Inf. Model.20195951988200810.1021/acs.jcim.8b00876 30762371
    [Google Scholar]
  37. QinZ. WangM. YanA. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).Bioorg. Med. Chem. Lett.201727132931293810.1016/j.bmcl.2017.05.001 28501513
    [Google Scholar]
  38. FrancoeurP.G. KoesD.R. SolTranNet–A machine learning tool for fast aqueous solubility prediction.J. Chem. Inf. Model.20216162530253610.1021/acs.jcim.1c00331 34038123
    [Google Scholar]
  39. MontanariF. KuhnkeL. Ter LaakA. ClevertD.A. Modeling physico-chemical ADMET endpoints with multitask graph convolutional networks.Molecules20192514410.3390/molecules25010044 31877719
    [Google Scholar]
  40. LapinsM. ArvidssonS. LampaS. BergA. SchaalW. AlvarssonJ. SpjuthO. A confidence predictor for logD using conformal regression and a support-vector machine.J. Cheminform.20181011710.1186/s13321‑018‑0271‑1 29616425
    [Google Scholar]
  41. SorkunM.C. KhetanA. ErS. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds.Sci. Data20196114310.1038/s41597‑019‑0151‑1 31395888
    [Google Scholar]
  42. TetkoI.V. M LoweD. WilliamsA.J. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS.J. Cheminform.201681210.1186/s13321‑016‑0113‑y 26807157
    [Google Scholar]
  43. MerzK.M.Jr De FabritiisG. WeiG.W. Generative models for molecular design.J. Chem. Inf. Model.202060125635563610.1021/acs.jcim.0c01388 33378853
    [Google Scholar]
  44. XieW. WangF. LiY. LaiL. PeiJ. Advances and challenges in de novo drug design using three-dimensional deep generative models.J. Chem. Inf. Model.202262102269227910.1021/acs.jcim.2c00042 35544331
    [Google Scholar]
  45. LangevinM. MinouxH. LevesqueM. BianciottoM. Scaffold-constrained molecular generation.J. Chem. Inf. Model.202060125637564610.1021/acs.jcim.0c01015 33301333
    [Google Scholar]
  46. LiY. ZhangL. WangY. ZouJ. YangR. LuoX. WuC. YangW. TianC. XuH. WangF. YangX. LiL. YangS. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor.Nat. Commun.2022131689110.1038/s41467‑022‑34692‑w 36371441
    [Google Scholar]
  47. BagalV. AggarwalR. VinodP.K. PriyakumarU.D. MolGPT: Molecular generation using a transformer-decoder model.J. Chem. Inf. Model.20226292064207610.1021/acs.jcim.1c00600 34694798
    [Google Scholar]
  48. XuM. RanT. ChenH. De Novo molecule design through the molecular generative model conditioned by 3D information of protein binding sites.J. Chem. Inf. Model.20216173240325410.1021/acs.jcim.0c01494 34197105
    [Google Scholar]
  49. MaB. TerayamaK. MatsumotoS. IsakaY. SasakuraY. IwataH. ArakiM. OkunoY. Structure-Based de Novo molecular generator combined with artificial intelligence and docking simulations.J. Chem. Inf. Model.20216173304331310.1021/acs.jcim.1c00679 34242036
    [Google Scholar]
  50. SeglerM.H.S. KogejT. TyrchanC. WallerM.P. Generating focused molecule libraries for drug discovery with recurrent neural networks.ACS Cent. Sci.20184112013110.1021/acscentsci.7b00512 29392184
    [Google Scholar]
  51. GaoK. NguyenD.D. TuM. WeiG.W. Generative network complex for the automated generation of drug-like molecules.J. Chem. Inf. Model.202060125682569810.1021/acs.jcim.0c00599 32686938
    [Google Scholar]
  52. OlivecronaM. BlaschkeT. EngkvistO. ChenH. Molecular de-novo design through deep reinforcement learning.J. Cheminform.2017914810.1186/s13321‑017‑0235‑x 29086083
    [Google Scholar]
  53. GodinezW.J. MaE.J. ChaoA.T. PeiL. Skewes-CoxP. CanhamS.M. JenkinsJ.L. YoungJ.M. MartinE.J. GuiguemdeW.A. Design of potent antimalarials with generative chemistry.Nat. Mach. Intell.20224218018610.1038/s42256‑022‑00448‑w
    [Google Scholar]
  54. RogersD. HahnM. Extended-connectivity fingerprints.J. Chem. Inf. Model.201050574275410.1021/ci100050t 20426451
    [Google Scholar]
  55. RDKit. RDKit: Open-source cheminformatics software.2020Available from: https://www.rdkit.org
  56. YapC.W. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints.J. Comput. Chem.20113271466147410.1002/jcc.21707 21425294
    [Google Scholar]
  57. PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. PrettenhoferP. WeissR. DubourgV. VanderplasJ. PassosA. CournapeauD. BrucherM. PerrotM. DuchesnayÉ. Scikit-Learn: Machine learning in Python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  58. SciKit Learn Machine learning in Python.2024Available From:https://scikit-learn.org/stable/
  59. BreimanL. Random Forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  60. MaJ. SheridanR.P. LiawA. DahlG.E. SvetnikV. Deep neural nets as a method for quantitative structure-activity relationships.J. Chem. Inf. Model.201555226327410.1021/ci500747n 25635324
    [Google Scholar]
  61. QinZ. YanA. QSAR studies on hepatitis C virus NS5A protein tetracyclic inhibitors in wild type and mutants by CoMFA and CoMSIA.SAR QSAR Environ. Res.202031428131110.1080/1062936X.2020.1740889 32208783
    [Google Scholar]
  62. PyTorch. Pytorch, Version 0.11.0.2024Available from: https://pytorch.org/
  63. SushkoI. NovotarskyiS. KörnerR. PandeyA.K. KovalishynV.V. ProkopenkoV.V. TetkoI.V. Applicability domain for in silico models to achieve accuracy of experimental measurements.J. Chemometr.2010243-420220810.1002/cem.1296
    [Google Scholar]
  64. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  65. Schrödinger Protein preparation wizard.2020Available From: https://www.schrodinger.com/life-science/learn/white-papers/protein-preparation-wizard/
  66. Schrödinger Maestro.2020Available From https://www.schrodinger.com/platform/products/maestro/
  67. Schrödinger LigPrep.2020Available From: https://www.schrodinger.com/platform/products/ligprep/
  68. ShelleyJ.C. CholletiA. FryeL.L. GreenwoodJ.R. TimlinM.R. UchimayaM. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules.J. Comput. Aided Mol. Des.2007211268169110.1007/s10822‑007‑9133‑z 17899391
    [Google Scholar]
  69. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  70. Schrödinger Glide.2020Available From: https://www.schrodinger.com/platform/products/glide/
  71. DegenJ. Wegscheid-GerlachC. ZalianiA. RareyM. On the art of compiling and using ‘drug-like’ chemical fragment spaces.ChemMedChem20083101503150710.1002/cmdc.200800178 18792903
    [Google Scholar]
  72. MendezD. GaultonA. BentoA.P. ChambersJ. De VeijM. FélixE. MagariñosM.P. MosqueraJ.F. MutowoP. NowotkaM. Gordillo-MarañónM. HunterF. JuncoL. MugumbateG. Rodriguez-LopezM. AtkinsonF. BoscN. RadouxC.J. Segura-CabreraA. HerseyA. LeachA.R. ChEMBL: Towards direct deposition of bioassay data.Nucleic Acids Res.201947D1D930D94010.1093/nar/gky1075 30398643
    [Google Scholar]
  73. AmabilinoS. PogányP. PickettS.D. GreenD.V.S. Guidelines for recurrent neural network transfer learning-based molecular generation of focused libraries.J. Chem. Inf. Model.202060125699571310.1021/acs.jcim.0c00343 32659085
    [Google Scholar]
  74. RoosK. WuC. DammW. ReboulM. StevensonJ.M. LuC. DahlgrenM.K. MondalS. ChenW. WangL. AbelR. FriesnerR.A. HarderE.D. OPLS3e: Extending force field coverage for drug-like small molecules.J. Chem. Theory Comput.20191531863187410.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  75. BowersK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing11-17 November 2006New York, NY, USA2006.10.1109/SC.2006.54
    [Google Scholar]
  76. Schrödinger ReleaseDesmond molecular dynamics system.2019Available From: https://www.schrodinger.com/platform/products/desmond/
  77. LiJ. AbelR. ZhuK. CaoY. ZhaoS. FriesnerR.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling.Proteins201179102794281210.1002/prot.23106 21905107
    [Google Scholar]
  78. LyuJ. WangS. BaliusT.E. SinghI. LevitA. MorozY.S. O’MearaM.J. CheT. AlgaaE. TolmachovaK. TolmachevA.A. ShoichetB.K. RothB.L. IrwinJ.J. Ultra-large library docking for discovering new chemotypes.Nature2019566774322422910.1038/s41586‑019‑0917‑9 30728502
    [Google Scholar]
/content/journals/cad/10.2174/0115734099305142240508051830
Loading
/content/journals/cad/10.2174/0115734099305142240508051830
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test