Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Inguinal hernia in adults is a common and frequent disease in surgery, prone to occur in the elderly or in those with a weak abdominal wall. Despite its prevalence, Molecular mechanisms underlying inguinal hernia formation are unclear.

Objectives

This study aims to identify potential gene markers for inguinal hernia and available drugs.

Methods

Pubmed2Ensembl text mining was used to identify genes related to “inguinal hernia” keywords. The GeneCodis system was used to specify GO biological process terms and KEGG pathways defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG). The STRING tool was used to construct protein-protein interaction networks, which were then visualized using Cytoscape.CytoHubba and Molecular Complex Detection were utilized to analyze the module (MCODE). A GO and KEGG analysis of gene modules was conducted using the DAVID platform database. Hub genes are those that are concentrated in prominent modules. The drug-gene interaction database was also used to identify potential drugs for inguinal hernia patients based on their interactions between the hub genes. Finally, a Mendelian randomization study was conducted based on genome-wide association studies to determine whether hub genes cause inguinal hernias.

Results

The identification of 96 genes associated with inguinal hernia was carried out using text mining techniques. It was constructed using PPI networks with 80 nodes and 476 edges, and the sequence of the genes was performed using CytoHubba. MCODE analysis identified three gene modules. Three modules contain 37 genes clustered as hub candidate genes associated with inguinal hernia patients. The PI3K-Akt, MAPK, AGE-RAGE, and HIF-1 pathways were found to be enriched in signaling pathways. Sixteen of the 37 genes were found to be targetable by 30 existing drugs. The relationship between hub genes and inguinal hernia was examined using Mendelian randomization. The research revealed nine genes that may be connected with inguinal hernia, such as POMC, CD40LG, TFRC, VWF, LOX, IGF2, BRCA1, TNF, and HGF in the plasma. By inverse variance weighting, ALB was associated with an increased risk of inguinal hernia with an OR of 1.203 (OR [95%] = 1,04 [1.012 to 1.089], = 0.008).

Conclusion

We identified potential hub genes for inguinal hernia, predicted potential drugs for inguinal hernia, and reverse-validated potential genes by Mendelian randomization. This may provide further insights into asymptomatic pre-diagnostic methods and contribute to studies to understand the molecular mechanisms of risk genes associated with inguinal hernia.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282407240325054745
2024-04-05
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/6/CCADD-21-6-12.html?itemId=/content/journals/cad/10.2174/0115734099282407240325054745&mimeType=html&fmt=ahah

References

  1. PrabhuA.S. CarbonellA. HopeW. WarrenJ. HigginsR. JacobB. BlatnikJ. HaskinsI. AlkhatibH. TastaldiL. FafajA. TuC. RosenM.J. Robotic inguinal vs transabdominal laparoscopic inguinal hernia repair.JAMA Surg.2020155538038710.1001/jamasurg.2020.0034 32186683
    [Google Scholar]
  2. MillerH.J. Inguinal hernia.Surg. Clin. North Am.201898360762110.1016/j.suc.2018.02.005 29754625
    [Google Scholar]
  3. OorJ.E. RoksD.J. KoetjeJ.H. BroedersJ.A. van WestreenenH.L. NieuwenhuijsV.B. HazebroekE.J. Randomized clinical trial comparing laparoscopic hiatal hernia repair using sutures versus sutures reinforced with non-absorbable mesh.Surg. Endosc.201832114579458910.1007/s00464‑018‑6211‑3 29766301
    [Google Scholar]
  4. CaiL.Z. FosterD. KethmanW.C. WeiserT.G. ForresterJ.D. Surgical site infections after inguinal hernia repairs performed in low- and middle-human development index countries: A systematic review.Surg. Infect.2018191112010.1089/sur.2017.154 29048997
    [Google Scholar]
  5. BergerD. Evidence-based hernia treatment in adults.Dtsch. Arztebl. Int.2016113915015710.3238/arztebl.2016.0150 26987468
    [Google Scholar]
  6. BarnettC. LangerJ.C. HinekA. BradleyT.J. ChitayatD. Looking past the lump: Genetic aspects of inguinal hernia in children.J. Pediatr. Surg.20094471423143110.1016/j.jpedsurg.2008.12.022 19573673
    [Google Scholar]
  7. KardonG. AckermanK.G. McCulleyD.J. ShenY. WynnJ. ShangL. BogenschutzE. SunX. ChungW.K. Congenital diaphragmatic hernias: From genes to mechanisms to therapies.Dis. Model. Mech.201710895597010.1242/dmm.028365 28768736
    [Google Scholar]
  8. BaranJ. GernerM. HaeusslerM. NenadicG. BergmanC.M. pubmed2ensembl: A resource for mining the biological literature on genes.PLoS One201169e2471610.1371/journal.pone.0024716 21980353
    [Google Scholar]
  9. Carmona-SaezP. ChagoyenM. TiradoF. CarazoJ.M. Pascual-MontanoA. GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists.Genome Biol.200781R310.1186/gb‑2007‑8‑1‑r3 17204154
    [Google Scholar]
  10. ZhangL. CaiJ. XiaoJ. YeZ. Identification of core genes and pathways between geriatric multimorbidity and renal insufficiency: Potential therapeutic agents discovered using bioinformatics analysis.BMC Med. Genomics202215121210.1186/s12920‑022‑01370‑1 36209090
    [Google Scholar]
  11. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. Huerta-CepasJ. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: Protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku1003 25352553
    [Google Scholar]
  12. LiW-H. HanJ-R. RenP-P. XieY. JiangD-Y. Exploration of the mechanism of zisheng shenqi decoction against gout arthritis using network pharmacology.Comput. Biol. Chem.20219010735810.1016/j.compbiolchem.2020.107358
    [Google Scholar]
  13. BaderG.D. HogueC.W.V. An automated method for finding molecular complexes in large protein interaction networks.BMC Bioinformatics200341210.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  14. HuangD. ShermanB.T. TanQ. CollinsJ.R. AlvordW.G. RoayaeiJ. StephensR. BaselerM.W. LaneH.C. LempickiR.A. The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biol.200789R18310.1186/gb‑2007‑8‑9‑r183 17784955
    [Google Scholar]
  15. AlterovitzG. XiangM. MohanM. RamoniM.F.G.O. PaD: The gene ontology partition database.Nucleic Acids Res.2007351D322D32710.1093/nar/gkl799 17098937
    [Google Scholar]
  16. KanehisaM. SatoY. MorishimaK. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences.J. Mol. Biol.2016428472673110.1016/j.jmb.2015.11.006 26585406
    [Google Scholar]
  17. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa1084 33237278
    [Google Scholar]
  18. JansenH. SamaniN.J. SchunkertH. Mendelian randomization studies in coronary artery disease.Eur. Heart J.201435291917192410.1093/eurheartj/ehu208 24917639
    [Google Scholar]
  19. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.17219 29164242
    [Google Scholar]
  20. RasoolyD. PatelC.J. Conducting a reproducible mendelian randomization analysis using the r analytic statistical environment.Curr. Protoc. Hum. Genet.20191011e8210.1002/cphg.82 30645041
    [Google Scholar]
  21. FengR. LuM. XuJ. ZhangF. YangM. LuoP. XuK. XuP. Pulmonary embolism and 529 human blood metabolites: Genetic correlation and two-sample Mendelianrandomization study.BMC genomic data20222316910.1186/s12863‑022‑01082‑6
    [Google Scholar]
  22. BurgessS. ThompsonS.G. Avoiding bias from weak instruments in Mendelian randomization studies.Int. J. Epidemiol.201140375576410.1093/ije/dyr036 21414999
    [Google Scholar]
  23. GudichaD.W. SchmittmannV.D. VermuntJ.K. Statistical power of likelihood ratio and Wald tests in latent class models with covariates.Behav. Res. Methods20174951824183710.3758/s13428‑016‑0825‑y 28039681
    [Google Scholar]
  24. LinL. ZhangR. HuangH. ZhuY. LiY. DongX. ShenS. WeiL. ChenX. ChristianiD.C. WeiY. ChenF. Mendelian randomization with refined instrumental variables from genetic score improves accuracy and reduces bias.Front. Genet.20211261882910.3389/fgene.2021.618829 33868364
    [Google Scholar]
  25. PalmerT.M. SterneJ.A.C. HarbordR.M. LawlorD.A. SheehanN.A. MengS. GranellR. SmithG.D. DidelezV. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses.Am. J. Epidemiol.2011173121392140310.1093/aje/kwr026 21555716
    [Google Scholar]
  26. BowdenJ. Davey SmithG. BurgessS. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv080 26050253
    [Google Scholar]
  27. van KippersluisH. RietveldC.A. Pleiotropy-robust Mendelian randomization.Int. J. Epidemiol.20184741279128810.1093/ije/dyx002 28338774
    [Google Scholar]
  28. YinK.J. HuangJ.X. WangP. YangX.K. TaoS.S. LiH.M. NiJ. PanH.F. No genetic causal association between periodontitis and arthritis: a bidirectional two-sample mendelian randomization analysis.Front. Immunol.20221380883210.3389/fimmu.2022.808832 35154127
    [Google Scholar]
  29. BowdenJ. Davey SmithG. HaycockP.C. BurgessS. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator.Genet. Epidemiol.201640430431410.1002/gepi.21965 27061298
    [Google Scholar]
  30. HartwigF.P. Davey SmithG. BowdenJ. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.Int. J. Epidemiol.20174661985199810.1093/ije/dyx102 29040600
    [Google Scholar]
  31. DudbridgeF. Polygenic mendelian randomization.Cold Spring Harb. Perspect. Med.2021112a03958610.1101/cshperspect.a039586 32229610
    [Google Scholar]
  32. FerkingstadE. SulemP. AtlasonB.A. SveinbjornssonG. MagnussonM.I. StyrmisdottirE.L. GunnarsdottirK. HelgasonA. OddssonA. HalldorssonB.V. JenssonB.O. ZinkF. HalldorssonG.H. MassonG. ArnadottirG.A. KatrinardottirH. JuliussonK. MagnussonM.K. MagnussonO.T. FridriksdottirR. SaevarsdottirS. GudjonssonS.A. StaceyS.N. RognvaldssonS. EiriksdottirT. OlafsdottirT.A. SteinthorsdottirV. TraganteV. UlfarssonM.O. StefanssonH. JonsdottirI. HolmH. RafnarT. MelstedP. SaemundsdottirJ. NorddahlG.L. LundS.H. GudbjartssonD.F. ThorsteinsdottirU. StefanssonK. Large-scale integration of the plasma proteome with genetics and disease.Nat. Genet.202153121712172110.1038/s41588‑021‑00978‑w 34857953
    [Google Scholar]
  33. VõsaU. ClaringbouldA. WestraH.J. BonderM.J. DeelenP. ZengB. KirstenH. SahaA. KreuzhuberR. YazarS. BruggeH. OelenR. de VriesD.H. van der WijstM.G.P. KaselaS. PervjakovaN. AlvesI. FavéM.J. AgbessiM. ChristiansenM.W. JansenR. SeppäläI. TongL. TeumerA. SchrammK. HemaniG. VerlouwJ. YaghootkarH. Sönmez FlitmanR. BrownA. KukushkinaV. KalnapenkisA. RüegerS. PorcuE. KronbergJ. KettunenJ. LeeB. ZhangF. QiT. HernandezJ.A. ArindrartoW. BeutnerF. ‘t HoenP.A.C. van MeursJ. van DongenJ. van ItersonM. SwertzM.A. Jan BonderM. DmitrievaJ. ElansaryM. FairfaxB.P. GeorgesM. HeijmansB.T. HewittA.W. KähönenM. KimY. KnightJ.C. KovacsP. KrohnK. LiS. LoefflerM. MarigortaU.M. MeiH. MomozawaY. Müller-NurasyidM. NauckM. NivardM.G. PenninxB.W.J.H. PritchardJ.K. RaitakariO.T. RotzschkeO. SlagboomE.P. StehouwerC.D.A. StumvollM. SullivanP. ’t HoenP.A.C. ThieryJ. TönjesA. van DongenJ. van ItersonM. VeldinkJ.H. VölkerU. WarmerdamR. WijmengaC. SwertzM. AndiappanA. MontgomeryG.W. RipattiS. PerolaM. KutalikZ. DermitzakisE. BergmannS. FraylingT. van MeursJ. ProkischH. AhsanH. PierceB.L. LehtimäkiT. BoomsmaD.I. PsatyB.M. GharibS.A. AwadallaP. MilaniL. OuwehandW.H. DownesK. StegleO. BattleA. VisscherP.M. YangJ. ScholzM. PowellJ. GibsonG. EskoT. FrankeL. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression.Nat. Genet.20215391300131010.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  34. ConroyM.C. LaceyB. BeševićJ. OmiyaleW. FengQ. EffinghamM. SellersJ. SheardS. PancholiM. GregoryG. BusbyJ. CollinsR. AllenN.E.U.K. Biobank: A globally important resource for cancer research.Br. J. Cancer2023128451952710.1038/s41416‑022‑02053‑5 36402876
    [Google Scholar]
  35. FinnGen.Available from: https://r7.finngen.fi/ (Accessed 1 Oct 2022)
  36. SudlowC. GallacherJ. AllenN. BeralV. BurtonP. DaneshJ. DowneyP. ElliottP. GreenJ. LandrayM. LiuB. MatthewsP. OngG. PellJ. SilmanA. YoungA. SprosenT. PeakmanT. CollinsR. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age.PLoS Med.2015123e100177910.1371/journal.pmed.1001779 25826379
    [Google Scholar]
  37. HemaniG. ZhengJ. ElsworthB. WadeK.H. HaberlandV. BairdD. LaurinC. BurgessS. BowdenJ. LangdonR. TanV.Y. YarmolinskyJ. ShihabH.A. TimpsonN.J. EvansD.M. ReltonC. MartinR.M. Davey SmithG. GauntT.R. HaycockP.C. The MR-Base platform supports systematic causal inference across the human phenome.eLife20187e3440810.7554/eLife.34408 29846171
    [Google Scholar]
  38. ElsworthB. LyonM. AlexanderT. LiuY. MatthewsP. HallettJ. BatesP. PalmerT. HaberlandV. SmithG.D. ZhengJ. HaycockP. GauntT.R. HemaniG. The MRC IEU OpenGWAS data infrastructure.bioRxiv202010.1101/2020.08.10.244293
    [Google Scholar]
  39. JonesS.A. JenkinsB.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer.Nat. Rev. Immunol.2018181277378910.1038/s41577‑018‑0066‑7 30254251
    [Google Scholar]
  40. WolfC.L. PruettC. LighterD. JorcykC.L. The clinical relevance of OSM in inflammatory diseases: A comprehensive review.Front. Immunol.202314123973210.3389/fimmu.2023.1239732 37841259
    [Google Scholar]
  41. LantieriF. BachettiT. OSM/OSMR and Interleukin 6 family cytokines in physiological and pathological condition.Int. J. Mol. Sci.202223191109610.3390/ijms231911096 36232392
    [Google Scholar]
  42. Rose-JohnS. Interleukin-6 family cytokines.Cold Spring Harb. Perspect. Biol.2018102a02841510.1101/cshperspect.a028415 28620096
    [Google Scholar]
  43. NicolaN.A. BabonJ.J. Leukemia inhibitory factor (LIF).Cytokine Growth Factor Rev.201526553354410.1016/j.cytogfr.2015.07.001 26187859
    [Google Scholar]
  44. MetcalfD. The unsolved enigmas of leukemia inhibitory factor.Stem Cells200321151410.1634/stemcells.21‑1‑5 12529546
    [Google Scholar]
  45. CawstonT.E. CurryV.A. SummersC.A. ClarkI.M. RileyG.P. LifeP.F. SpaullJ.R. GoldringM.B. KoshyP.J.T. RowanA.D. ShingletonW.D. The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint.Arthritis Rheum.199841101760177110.1002/1529‑0131(199810)41:10<1760:AID‑ART8>3.0.CO;2‑M 9778217
    [Google Scholar]
  46. DundarB. CesurG. ComlekciS. SongurA. GokcimenA. SahinO. UlukutO. YilmazH.R. SutcuR. CalıskanS. The effect of the prenatal and post-natal long-term exposure to 50 Hz electric field on growth, pubertal development and IGF-1 levels in female Wistar rats.Toxicol. Ind. Health200925747948710.1177/0748233709345942 19783573
    [Google Scholar]
  47. WitschJ. SzafranskiP. ChenC.A. ImmkenL. Simpson PatelG. HixsonP. CheungS.W. StankiewiczP. SchaafC.P. Intragenic deletions of the IGF1 receptor gene in five individuals with psychiatric phenotypes and developmental delay.Eur. J. Hum. Genet.201321111304130710.1038/ejhg.2013.42 23486542
    [Google Scholar]
  48. ArayaP. KinningK.T. CoughlanC. SmithK.P. GranrathR.E. Enriquez-EstradaB.A. WorekK. SullivanK.D. RachubinskiA.L. Wolter-WarmerdamK. HickeyF. GalbraithM.D. PotterH. EspinosaJ.M. IGF1 deficiency integrates stunted growth and neurodegeneration in Down syndrome.Cell Rep.2022411311188310.1016/j.celrep.2022.111883 36577365
    [Google Scholar]
  49. KoppleJ.D. DingH. GaoX.L. Altered physiology and action of insulin-like growth factor 1 in skeletal muscle in chronic renal failure.Am. J. Kidney Dis.199526124825510.1016/0272‑6386(95)90180‑9 7611259
    [Google Scholar]
  50. DixitM. PoudelS.B. YakarS. Effects of GH/IGF axis on bone and cartilage.Mol. Cell. Endocrinol.202151911105210.1016/j.mce.2020.111052 33068640
    [Google Scholar]
  51. Fierro-MacíasA.E. Floriano-SánchezE. Mena-BurciagaV.M. Gutiérrez-LeonardH. Lara-PadillaE. Abarca-RojanoE. Fierro-AlmanzánA.E. [Association between IGF system and PAPP-A in coronary atherosclerosis].Arch. Cardiol. Mex.201686214815610.1016/j.acmx.2015.12.006 26906607
    [Google Scholar]
  52. PowellB. MalaspinaD.C. SzleiferI. DhaherY. Effect of collagenase–gelatinase ratio on the mechanical properties of a collagen fibril: A combined Monte Carlo–molecular dynamics study.Biomech. Model. Mechanobiol.20191861809181910.1007/s10237‑019‑01178‑6 31161353
    [Google Scholar]
  53. de AlmeidaL.G.N. ThodeH. EslambolchiY. ChopraS. YoungD. GillS. DevelL. DufourA. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology.Pharmacol. Rev.202274371477010.1124/pharmrev.121.000349 35738680
    [Google Scholar]
  54. VafadariB. SalamianA. KaczmarekL. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy.J. Neurochem.2016139S2)(29111410.1111/jnc.1341526525923
    [Google Scholar]
  55. ŚmigielskiJ. BrockiM. KuzdakK. KołomeckiK. Serum MMP 2 and TIMP 2 in patients with inguinal hernias.Eur. J. Clin. Invest.201141658458810.1111/j.1365‑2362.2010.02445.x 21299549
    [Google Scholar]
  56. AntoniouG.A. TentesI.K. AntoniouS.A. SimopoulosC. LazaridesM.K. Matrix metalloproteinase imbalance in inguinal hernia formation.J. Invest. Surg.201124414515010.3109/08941939.2011.558610 21675849
    [Google Scholar]
  57. WangD. HanY. XuX. ChenJ. ChenY. Matrix metalloproteinases (MMP‐2) and tissue inhibitors of metalloproteinases (TIMP‐2) in patients with inguinal hernias.World J. Surg.202044113679368610.1007/s00268‑020‑05674‑0 32623572
    [Google Scholar]
  58. LiJ. ZhangX. SunQ. LiW. YuA. FuH. ChenK. Circulating matrix metalloproteinases and procollagen propeptides in inguinal hernia.Hernia201822354154710.1007/s10029‑018‑1751‑y 29484522
    [Google Scholar]
  59. VollmerS. KapplerV. KaczorJ. FlügelD. RolveringC. KatoN. KietzmannT. BehrmannI. HaanC. Hypoxia-inducible factor 1α is up-regulated by oncostatin M and participates in oncostatin M signaling.Hepatology200950125326010.1002/hep.22928 19441100
    [Google Scholar]
  60. YokotaH. GoldringM.B. SunH.B. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear.J. Biol. Chem.200327847472754728010.1074/jbc.M304652200 12960175
    [Google Scholar]
  61. SuzukiE. MellinsE.D. GershwinM.E. NestleF.O. AdamopoulosI.E. The IL-23/IL-17 axis in psoriatic arthritis.Autoimmun. Rev.2014134-549650210.1016/j.autrev.2014.01.050 24424175
    [Google Scholar]
  62. YuJ.S.L. CuiW. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination.Development2016143173050306010.1242/dev.137075 27578176
    [Google Scholar]
  63. DuanM.X. ZhouH. WuQ.Q. LiuC. XiaoY. DengW. TangQ.Z. Andrographolide protects against HG-induced inflammation, apoptosis, migration, and impairment of angiogenesis via PI3K/AKT-eNOS Signalling in HUVECs.Mediators Inflamm.2019201911510.1155/2019/6168340 31686985
    [Google Scholar]
  64. PortaC. PaglinoC. MoscaA. Targeting PI3K/Akt/mTOR signaling in cancer.Front. Oncol.201446410.3389/fonc.2014.00064 24782981
    [Google Scholar]
  65. S N ChaitanyaN. DeviA SahuS. AlugojuP. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review.Life Sci.202126911896810.1016/j.lfs.2020.118968 33417959
    [Google Scholar]
  66. NoshitaS. KuboY. KajiwaraK. OkuzakiD. NadaS. OkadaM. A TGF-β-responsive enhancer regulates SRC expression and epithelial–mesenchymal transition-associated cell migration.J. Cell Sci.202313615jcs26100110.1242/jcs.261001 37439249
    [Google Scholar]
  67. MishraR. ZhuL. EckertR.L. SimonsonM.S. TGF-β-regulated collagen type I accumulation: Role of Src-based signals.Am. J. Physiol. Cell Physiol.20072924C1361C136910.1152/ajpcell.00370.2006 17135298
    [Google Scholar]
  68. BendavidR. The unified theory of hernia formation.Hernia20048317117610.1007/s10029‑004‑0217‑6 15293113
    [Google Scholar]
  69. KhanM.I. KhanM.Z. ShinJ.H. ShinT.S. LeeY.B. KimM.Y. KimJ.D. Pharmacological approaches to attenuate inflammation and obesity with natural products formulations by regulating the associated promoting molecular signaling pathways.BioMed Res. Int.2021202112310.1155/2021/2521273 34812408
    [Google Scholar]
  70. ShirakawaT. FujisueK. NakamuraS. YamamotoN. OshimaS. MatsumuraT. TsunodaR. HiraiN. KoideS. TayamaS. KikutaK. HiroseT. MaruyamaH. FujimotoK. KajiwaraI. SakamotoT. NakaoK. SakainoN. NagayoshiY. HokamakiJ. ShimomuraH. SakamotoK. YamamotoE. IzumiyaY. KaikitaK. HokimotoS. OgawaH. TsujitaK. Dose-dependent inhibitory effect of rosuvastatin in japanese patients with acute myocardial infarction on serum concentration of matrix metalloproteinases–invitation trial.J. Atheroscler. Thromb.202229222924110.5551/jat.59477 33408315
    [Google Scholar]
  71. LiuZ. ZhaoY. WeiF. YeL. LuF. ZhangH. DiaoY. SongH. QiZ. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis.Atherosclerosis2014233129129910.1016/j.atherosclerosis.2013.12.004 24495792
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282407240325054745
Loading
/content/journals/cad/10.2174/0115734099282407240325054745
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatics; drug discovery; gene; Inguinal hernia; mendelian randomization; text mining
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test