Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Virtual screening (VS) could select possible effective candidates from a large number of organic compounds, which plays an important role in network pharmacology. Virtual screening is a very important step in network pharmacology.

Objective

The accuracy of screening compounds directly determines the subsequent network construction, target determination and pathway analysis. In order to improve the accuracy of screening the important compounds in herbs for treating diabetes, a novel methodology based on complex-valued flexible neural tree (CVFNT) model and negative sample selection algorithm is presented.

Methods

In our method, diabetes-related targets were obtained by literature search. According to diabetes-related targets, active compounds were searched from the public database. The negative sample selection algorithm based on Tanimoto index was proposed to establish inactive compound set. The CVFNT model optimized was utilized to screen effective candidate compounds.

Result

Our proposed method performs better than eight classical classifiers in terms of TPR, FPR, Precision, Specificity, F1, AUC and ROC curve. Our method could also predict 18 compounds from Liangxue Sanyu Decoction, which are involved in the treatment of diabetes.

Conclusion

Our proposed method could effectively improve the identification accuracy of diabetes-related compounds, enhance the performance of network pharmacology analysis, and provide a new idea for drug research and development for the treatment and prevention of diabetes.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099311445240529062318
2024-06-07
2026-02-01
Loading full text...

Full text loading...

References

  1. HanleyA.J.G. McKeown-EyssenG. HarrisS.B. HegeleR.A. WoleverT.M.S. KwanJ. ZinmanB. Association of parity with risk of type 2 diabetes and related metabolic disorders.Diabetes Care200225469069510.2337/diacare.25.4.690 11919126
    [Google Scholar]
  2. PangM. LiY. GuW. SunZ. WangZ. LiL. Recent advances in epigenetics of macrovascular complications in diabetes mellitus.Heart Lung Circ.202130218619610.1016/j.hlc.2020.07.015 32873490
    [Google Scholar]
  3. EspinoJ. ParienteJ.A. RodríguezA.B. Role of melatonin on diabetes-related metabolic disorders.World J. Diabetes201126829110.4239/wjd.v2.i6.82 21860691
    [Google Scholar]
  4. Diez-SampedroA. LenzO. FornoniA. Podocytopathy in diabetes: A metabolic and endocrine disorder.Am. J. Kidney Dis.201158463764610.1053/j.ajkd.2011.03.035 21719174
    [Google Scholar]
  5. GlasgowR.E. ToobertD.J. HampsonS.E. Effects of a brief office-based intervention to facilitate diabetes dietary self-management.Diabetes Care199619883584210.2337/diacare.19.8.835 8842601
    [Google Scholar]
  6. KadonoM. NakanishiN. YamazakiM. HasegawaG. NakamuraN. FukuiM. Various patterns of disrupted daily rest–activity rhythmicity associated with diabetes.J. Sleep Res.201625442643710.1111/jsr.12385 26853999
    [Google Scholar]
  7. WeiJ. ZhaoY. LiangH. DuW. WangL. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy.Acta Pharm. Sin. B202212111710.1016/j.apsb.2021.08.026 35127369
    [Google Scholar]
  8. Hamdan-MansourA.M. DughmoshR.A. Moderating effect of coping on the relationship between depression and chronic DM complications among patients with diabetes mellitus.Int. J. Diabetes Dev. Ctries.2023431121910.1007/s13410‑021‑01034‑3
    [Google Scholar]
  9. GurgoglioneF.L. PitoccoD. MontoneR.A. RinaldiR. BonadonnaR.C. MagnaniG. CalvieriC. SolinasE. RizziA. TartaglioneL. FlexA. VitiL. TraniC. ArdissinoD. CreaF. NiccoliG. Microvascular complications are associated with coronary collateralization in type 2 diabetes and chronic occlusion.J. Clin. Endocrinol. Metab.2023109123724410.1210/clinem/dgad396 37417706
    [Google Scholar]
  10. FarahmandF. LouH. SingalP.K. Oxidative Stress in Cardiovascular Complications of Diabetes.Atherosclerosis, Hypertension and Diabetes200342743710.1007/978‑1‑4419‑9232‑1_32
    [Google Scholar]
  11. SaghiriM.A. SuschaA. WangS. SaghiriA.M. SorensonC.M. SheibaniN. Noninvasive temporal detection of early retinal vascular changes during diabetes.Sci. Rep.20201011737010.1038/s41598‑020‑73486‑2 33060607
    [Google Scholar]
  12. LiuM. LiuZ. XuB. ZhangW. CaiJ. Review of systematic reviews and Meta-analyses investigating Traditional Chinese Medicine treatment for type 2 diabetes mellitus.J. Tradit. Chin. Med.201636555556310.1016/S0254‑6272(15)30062‑5 29932626
    [Google Scholar]
  13. TianJ. LiuW. ZhenZ. TongX. Successful treatment of latent autoimmune diabetes in adults with Traditional Chinese Medicine: a case report.J. Tradit. Chin. Med.201333676676910.1016/S0254‑6272(14)60010‑8 24660609
    [Google Scholar]
  14. ZhangT.T. JiangJ.G. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications.Expert Opin. Investig. Drugs201221111625164210.1517/13543784.2012.713937 22862558
    [Google Scholar]
  15. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  16. KarhanaS. DabralS. GargA. BanoA. AgarwalN. KhanM.A. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing.J. Cell. Biochem.202312471023103910.1002/jcb.30430 37334778
    [Google Scholar]
  17. TangJ. AittokallioT. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles.Curr. Pharm. Des.2014201233610.2174/13816128113199990470 23530504
    [Google Scholar]
  18. ShawkyE. Prediction of potential cancer-related molecular targets of North African plants constituents using network pharmacology-based analysis.J. Ethnopharmacol.201923811182610.1016/j.jep.2019.111826 30910579
    [Google Scholar]
  19. WangY. HuB. FengS. WangJ. ZhangF. Target recognition and network pharmacology for revealing anti-diabetes mechanisms of natural product.J. Comput. Sci.20204510118610.1016/j.jocs.2020.101186
    [Google Scholar]
  20. LiW. YuanG. PanY. WangC. ChenH. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review.Front. Pharmacol.201787410.3389/fphar.2017.00074 28280467
    [Google Scholar]
  21. SunY. XiongY. WuH. XiongW. LiuB. XieZ. XiaoW. HuangB. YangY. Active ingredients and mechanism of action of rhizoma coptidis against type 2 diabetes based on network-pharmacology and bioinformatics.Curr. Med. Sci.202040225726410.1007/s11596‑020‑2182‑4 32337687
    [Google Scholar]
  22. XueJ. ShiY. LiC. SongH. Network pharmacology‐based prediction of the active ingredients, potential targets, and signaling pathways in compound Lian‐Ge granules for treatment of diabetes.J. Cell. Biochem.201912046431644010.1002/jcb.27933 30362298
    [Google Scholar]
  23. JiM. YuY. WuJ. LiuJ. JiangY. JingZ. The mechanism of action of qihuang jiangtang capsule in the treatment of type 2 diabetes based on network pharmacology and molecular docking technology.Chin. med. nat. prod202223e131e14110.1055/s‑0042‑1757460
    [Google Scholar]
  24. LuoW. DengJ. HeJ. YinL. YouR. ZhangL. ShenJ. HanZ. XieF. HeJ. GuanY. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes.J. Cell. Mol. Med.202327141959197410.1111/jcmm.17787 37257051
    [Google Scholar]
  25. YuZ.H. ChenL. WuL. LiuS. WangL. ZhangZ.Y. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening.Bioorg. Med. Chem. Lett.201121144238424210.1016/j.bmcl.2011.05.078 21669525
    [Google Scholar]
  26. ZakiM.E.A. Al-HussainS.A. MasandV.H. AkasapuS. BajajS.O. El-SayedN.N.E. GhoshA. LewaaI. Identification of Anti-SARS-CoV-2 compounds from food using QSAR-based virtual screening, molecular docking, and molecular dynamics simulation analysis.Pharmaceuticals202114435710.3390/ph14040357 33924395
    [Google Scholar]
  27. GogoiB. GogoiD. SillaY. KakotiB.B. BhauB.S. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.Mol. Biosyst.201713240641610.1039/C6MB00807K 28070575
    [Google Scholar]
  28. LiH. HungA. YangA.W.H. Herb-target virtual screening and network pharmacology for prediction of molecular mechanism of Danggui Beimu Kushen Wan for prostate cancer.Sci. Rep.2021111665610.1038/s41598‑021‑86141‑1 33758314
    [Google Scholar]
  29. WangY. SunY. WangY. JuY. MengD. Virtual screening of active compounds from Artemisia argyi and potential targets against gastric ulcer based on Network pharmacology.Bioorg. Chem.20198810292410.1016/j.bioorg.2019.102924 31005783
    [Google Scholar]
  30. BerishviliV.P. VoronkovA.E. RadchenkoE.V. PalyulinV.A. Machine learning classification models to improve the docking‐based screening: A case of PI3K‐tankyrase inhibitors.Mol. Inform.20183711180003010.1002/minf.201800030 29901257
    [Google Scholar]
  31. ZhengY. KongL. Network pharmacology study on anti-stroke of Xiaoshuan Tongluo formula based on systematic compound-target interaction prediction models.Yao Xue Xue Bao2020552256264
    [Google Scholar]
  32. YangB. ChenY. ZhangW. LvJ. BaoW. HuangD.S. HSCVFNT: Inference of time-delayed gene regulatory network based on complex-valued flexible neural tree model.Int. J. Mol. Sci.20181910317810.3390/ijms19103178 30326663
    [Google Scholar]
  33. YangB. ZhangW. WangH. Time series prediction using complex-valued legendre neural network with different activation functions.Lect. Notes Comput. Sci.20181095620421110.1007/978‑3‑319‑95957‑3_22
    [Google Scholar]
  34. ChenY. YangB. MengQ. Small-time scale network traffic prediction based on flexible neural tree.Appl. Soft Comput.201212127427910.1016/j.asoc.2011.08.045
    [Google Scholar]
  35. YangB. BaoW. Complex-valued ordinary differential equation modeling for time series identification.IEEE Access20197410334104210.1109/ACCESS.2019.2902958
    [Google Scholar]
  36. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
  37. DongL. YangR. GuoP. Improving effect of hesperetin on the myogenic response of diabetic rat intrarenal artery.Chin. J. Clin. Pharmacol.2019359865868
    [Google Scholar]
  38. ZhangS. ZhangW. LiH. Mechanism of dachaihu decoction in the treatment of type 2 diabetes mellitus based on network pharmacology.World J. Integ. Trad. West. Med.202116712561264
    [Google Scholar]
  39. CaoY. ShengJ. XueY. Study on the mechanism of rhizoma anemarrhenae on prevention and treatment of diabetes based on network pharmacology.Lish. Med. Mat. Med. Res.202031615051509
    [Google Scholar]
  40. LiJ. LinD. ZhangY. Mechanisms of the drug pair coptis chinensis-pueraria lobata in the treatment of type 2 diabetes mellitus based on network pharmacology.World Chin. Med.2021166896900
    [Google Scholar]
  41. QiF. WangG. Recent advances of the berberrubine pharmacological action and structural.J. Pharm. Res.20215324328
    [Google Scholar]
  42. KasimuR. BasnetP. TezukaY. KadotaS. NambaT. Danshenols A and B, new aldose reductase inhibitors from the root of salvia miltiorhiza bunge.Chem. Pharm. Bull.199745356456610.1248/cpb.45.564
    [Google Scholar]
  43. ShiL. NieK. ZhangW. Pharmacological mechanism of xiao xianxiongtang in treatment of type 2 diabetes mellitus based on network pharmacology.Zhongguo Shiyan Fangjixue Zazhi2020264198206
    [Google Scholar]
  44. YanY. HuangM. YuY. Mechanism of sanye tangzhiqing tablet in treating type 2 diabetes mellitus based on network pharmacology.Tianj. J. Tradit. Chin. Med.2020374462468
    [Google Scholar]
  45. PatelM.B. MishraS. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia.Phytomedicine201118121045105210.1016/j.phymed.2011.05.006 21665451
    [Google Scholar]
  46. BurkeA.C. SutherlandB.G. TelfordD.E. MorrowM.R. SawyezC.G. EdwardsJ.Y. DrangovaM. HuffM.W. Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr−/− mice.J. Lipid Res.20185991714172810.1194/jlr.M087387 30008441
    [Google Scholar]
  47. HuangY. ShanH. ZhangT. Effect of berberine and coptisine on TPH1 in colon and pancreatic beta cells of T2DM mice.Central South Pharmacy20205761764
    [Google Scholar]
/content/journals/cad/10.2174/0115734099311445240529062318
Loading
/content/journals/cad/10.2174/0115734099311445240529062318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test