Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The incidence of CRC has increased worldwide over the past decade. The statistics report from WHO highlights the increased severity and fatality rate of CRC among the populations. Wnt/β-catenin is recognized as the resource for cell regeneration and cancer signaling pathways driven by frizzled receptor cofactors. Aberrant regulation of Wnt/β-catenin suppression is an important challenge in treating CRC management.

Aims and Objective

The SFRP1 comprises a cysteine-rich region that is homologous to the putative Wnt-binding sites of Frizzled proteins, with the potential to impede and alter the cascade of Wnt signaling. Indirect regulation, like targeting Wnt antagonist SFRP1, is an alternative strategy to suppress the cancer signals by enhancing the apoptotic activity. Hence, this study aimed to approach the SFRP1 protein as a therapeutic target to inhibit Wnt signaling in colorectal cancer. Further, it aimed to identify the lead compounds against the SFRP1 protein, to inhibit the oncogenic expression of CRC, which might be possible and druggable using computational approaches, recognizing the importance of the SFRP1 protein role in CRC.

Methods

The homology-modeled SFRP1 structure was refined, and virtual screening was performed against the anti-cancer drugs and natural drug databases to find the best hit molecules. The molecular docking, MD, and MMGBSA analysis confirmed the firm binding of SFRP1 complexes to identify the potent CRC inhibitors.

Results

The amino acid residues Arg5, Arg11, Ala13, Lys 245, Lys274, Phe147, Pro99, and Ser277 are essential for ligand binding and show similar interactions for SFRP1 complexes. The ADME/T profile for top hits is acceptable in range and obtains the drug-likeness property. The 100ns run for MD simulation confirms the stability of protein complexes.

Conclusion

Overall, the findings of this study reveal that the lead compounds screened are capable of inhibiting SFRP1 against CRC. Targeting SFRP1 paves the way for new platforms in the field of cancer and the therapeutic sector for new approachable finds.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099312707240702110653
2024-07-10
2026-02-01
Loading full text...

Full text loading...

References

  1. GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010-19: A systematic analysis for the Global Burden of Disease Study 2019.Lancet20224001035256359110.1016/S0140‑6736(22)01438‑6
    [Google Scholar]
  2. Indian Council of Medical Research.National Cancer Registry Program.Available from: https://www.ncdirindia.org/Area_Cancer.aspx
    [Google Scholar]
  3. MathurP. SathishkumarK. ChaturvediM. DasP. SudarshanK.L. SanthappanS. NallasamyV. JohnA. NarasimhanS. RoselindF.S. Cancer Statistics, 2020: Report from national cancer registry programme, India.JCO Glob. Oncol.2020661063107510.1200/GO.20.00122 32673076
    [Google Scholar]
  4. KameyamaH. NagahashiM. ShimadaY. TajimaY. IchikawaH. NakanoM. SakataJ. KobayashiT. NarayananS. TakabeK. WakaiT. Genomic characterization of colitis-associated colorectal cancer.World J. Surg. Oncol.201816112110.1186/s12957‑018‑1428‑0 29966533
    [Google Scholar]
  5. International Agency for Research on Cancer.World Health Organization.2018Available from: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf
    [Google Scholar]
  6. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  7. Subbiahanadar ChelladuraiK. Selvan ChristyrajJ.D. AzhagesanA. PaulrajV.D. JothimaniM. YesudhasonB.V. Chellathurai VasanthaN. GanesanM. RajagopalanK. VenkatachalamS. BenedictJ. John SamuelJ.K. Selvan ChristyrajJ.R.S. Exploring the effect of UV-C radiation on earthworm and understanding its genomic integrity in the context of H2AX expression.Sci. Rep.20201012100510.1038/s41598‑020‑77719‑2 33273505
    [Google Scholar]
  8. ChengX. XuX. ChenD. ZhaoF. WangW. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer.Biomed. Pharmacother.201911047348110.1016/j.biopha.2018.11.082
    [Google Scholar]
  9. ZhaoH. MingT. TangS. RenS. YangH. LiuM. TaoQ. XuH. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target.Mol. Cancer202221114410.1186/s12943‑022‑01616‑7 35836256
    [Google Scholar]
  10. CaldwellG.M. JonesC. GensbergK. JanS. HardyR.G. ByrdP. ChughtaiS. WallisY. MatthewsG.M. MortonD.G. The Wnt antagonist sFRP1 in colorectal tumorigenesis.Cancer Res.200464388388810.1158/0008‑5472.CAN‑03‑1346 14871816
    [Google Scholar]
  11. WuM. Drug repurposing of niclosamide in treating colorectal cancer.(Hong Kong)The Chinese University of Hong Kong2021
    [Google Scholar]
  12. MiglioreL. MigheliF. SpisniR. CoppedèF. Genetics, cytogenetics, and epigenetics of colorectal cancer.J. Biomed. Biotechnol.2011201111910.1155/2011/792362 21490705
    [Google Scholar]
  13. MafakherL. RismaniE. RahimiH. EnayatkhaniM. AzadmaneshK. Teimoori-ToolabiL. Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway.J. Biomol. Struct. Dyn.20224052169218810.1080/07391102.2020.1835718 33155881
    [Google Scholar]
  14. BurleyS.K. BermanH.M. DuarteJ.M. FengZ. FlattJ.W. HudsonB.P. LoweR. PeisachE. PiehlD.W. RoseY. SaliA. SekharanM. ShaoC. VallatB. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. Protein data bank: A comprehensive review of 3d structure holdings and worldwide utilization by researchers, educators, and students.Biomolecules20221210142510.3390/biom12101425 36291635
    [Google Scholar]
  15. LoganathanL. MuthusamyK. JayarajJ.M. KajamaideenA. BalthasarJ.J. In silico insights on tankyrase protein: A potential target for colorectal cancer.J. Biomol. Struct. Dyn.201937143637364810.1080/07391102.2018.1521748 30204055
    [Google Scholar]
  16. MeenakshiM. KannanA. JothimaniM. SelviT. KarthikeyanM. PrahalathanC. SrinivasanK. Evaluation of dual potentiality of 2,4,5-trisubstituted oxazole derivatives as aquaporin-4 inhibitors and anti-inflammatory agents in lung cells.RSC Advances20231337261112612010.1039/D3RA03989G 37664213
    [Google Scholar]
  17. SunkaraR.R. KoulgiS. JaniV. GadewalN. SonavaneU. JoshiR. WaghmareS.K. Understanding the binding affinities between SFRP1CRD, SFRP1Netrin, Wnt5B and frizzled receptors 2, 3 and 7 using MD simulations.J. Biomol. Struct. Dyn.202240156831684410.1080/07391102.2021.1890219 33666148
    [Google Scholar]
  18. NejabatM. HadizadehF. NejabatM. RajabiO. Novel hits for autosomal dominated polycystic kidney disease (ADPKD) targeting derived by in silico screening on ZINC-15 natural product database.J. Biomol. Struct. Dyn.202442288590210.1080/07391102.2023.2196700 37029756
    [Google Scholar]
  19. JayabalP. ZhouF. MaX. BondraK.M. BlackmanB. WeintraubS.T. ChenY. Chévez-BarriosP. HoughtonP.J. GallieB. ShiioY. Nitric oxide suppression by secreted frizzled-related protein 2 drives retinoblastoma.Cell Rep.202342211210310.1016/j.celrep.2023.112103 36773293
    [Google Scholar]
  20. ChenY. WengY. HuangJ. LiQ. SunB. WangH. WangZ. Leptin receptor (+) stromal cells respond to periodontitis and attenuate alveolar bone repair via CCRL2-mediated Wnt inhibition.J. Bone Miner. Res.202439561162610.1093/jbmr/zjae036
    [Google Scholar]
  21. ZhaoX. LuX. LiK. SongS. LuoZ. ZhengC. YangC. WangX. WangL. TangY. WangC. LiuJ. Double crosslinked biomimetic composite hydrogels containing topographical cues and WAY-316606 induce neural tissue regeneration and functional recovery after spinal cord injury.Bioact. Mater.20232433134510.1016/j.bioactmat.2022.12.024 36632504
    [Google Scholar]
  22. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  23. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky427 29788355
    [Google Scholar]
  24. ZhouX. ZhengW. LiY. PearceR. ZhangC. BellE.W. ZhangG. ZhangY. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction.Nat. Protoc.202217102326235310.1038/s41596‑022‑00728‑0 35931779
    [Google Scholar]
  25. ŠaliA. BlundellT.L. Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol.1993234377981510.1006/jmbi.1993.1626 8254673
    [Google Scholar]
  26. WebbB. SaliA. Comparative protein structure modeling using MODELLER.Curr Protoc Bioinformatics2016545.6.15.6.3710.1002/cpbi.3
    [Google Scholar]
  27. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: the universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  28. ShiryevS.A. PapadopoulosJ.S. SchäfferA.A. AgarwalaR. Improved BLAST searches using longer words for protein seeding.Bioinformatics200723212949295110.1093/bioinformatics/btm479 17921491
    [Google Scholar]
  29. KirubakaranP. KarthikeyanM. SinghK.D. NagamaniS. PremkumarK. In silico structural and functional analysis of the human TOPK protein by structure modeling and molecular dynamics studies.J. Mol. Model.201319140741910.1007/s00894‑012‑1566‑1 22940854
    [Google Scholar]
  30. ArabS.S. DantismA. EasyModel: A user-friendly web-based interface based on MODELLER.Sci. Rep.20231311718510.1038/s41598‑023‑44505‑9 37821634
    [Google Scholar]
  31. MasjediM.N. SadroddinyE. AiJ. BalalaieS. AsgariY. Targeted expression of a designed fusion protein containing BMP2 into the lumen of exosomes.Biochim. Biophys. Acta, Gen. Subj.20241868113050510.1016/j.bbagen.2023.130505
    [Google Scholar]
  32. PontiusJ. RichelleJ. WodakS.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures.J. Mol. Biol.1996264112113610.1006/jmbi.1996.0628 8950272
    [Google Scholar]
  33. MacArthurM.W. LaskowskiR.A. ThorntonJ.M. Knowledge-based validation of protein structure coordinates derived by X-ray crystallography and NMR spectroscopy.Curr. Opin. Struct. Biol.19944573173710.1016/S0959‑440X(94)90172‑4
    [Google Scholar]
  34. WiedersteinM. SipplM. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res200735Web Server issueW407W41010.1093/nar/gkm290
    [Google Scholar]
  35. SultanaT. MouS.I. ChatterjeeD. FarukM.O. HosenM.I. Computational exploration of SLC14A1 genetic variants through structure modeling, protein-ligand docking, and molecular dynamics simulation.Biochem. Biophys. Rep.20243810170310.1016/j.bbrep.2024.101703 38596408
    [Google Scholar]
  36. TorresS.V. LeungP.J.Y. VenkateshP. LutzI.D. HinkF. HuynhH.H. BeckerJ. YehA.H.W. JuergensD. BennettN.R. HoofnagleA.N. HuangE. MacCossM.J. ExpòsitM. LeeG.R. BeraA.K. KangA. De La CruzJ. LevineP.M. LiX. LambM. GerbenS.R. MurrayA. HeineP. KorkmazE.N. NivalaJ. StewartL. WatsonJ.L. RogersJ.M. BakerD. De novo design of high-affinity binders of bioactive helical peptides.Nature2023626799843544210.1038/s41586‑023‑06953‑1 38109936
    [Google Scholar]
  37. SchrodingerInc Schrodinger Release 2018 version 1 Maestro.New York, NYSchrodinger, LLC2018
    [Google Scholar]
  38. WangT. TongJ. ZhangX. WangZ. XuL. PanP. HouT. Structure-based virtual screening of novel USP5 inhibitors targeting the zinc finger ubiquitin-binding domain.Comput. Biol. Med.202417410839710.1016/j.compbiomed.2024.108397 38603896
    [Google Scholar]
  39. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  40. JamaM. AhmedM. JutlaA. WiethanC. KumarJ. MoonT.C. WestF. OverduinM. BarakatK.H. Discovery of allosteric SHP2 inhibitors through ensemble-based consensus molecular docking, endpoint and absolute binding free energy calculations.Comput. Biol. Med.202315210644210.1016/j.compbiomed.2022.106442 36566625
    [Google Scholar]
  41. VoigtJ.H. BienfaitB. WangS. NicklausM.C. Comparison of the NCI open database with seven large chemical structural databases.J. Chem. Inf. Comput. Sci.200141370271210.1021/ci000150t 11410049
    [Google Scholar]
  42. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+ 15667143
    [Google Scholar]
  43. JeonM. KimS. ParkS. LeeH. KangJ. In silico drug combination discovery for personalized cancer therapy.BMC Syst. Biol.201812S2)(2)1610.1186/s12918‑018‑0546‑1 29560824
    [Google Scholar]
  44. BhandariS.V. KutheP.V. PatilS.M. NagrasO.G. SarkateA.P. ChaudhariS.Y. SurveS.V. Molecular docking, pharmacokinetic and molecular simulation analysis of novel mono‐carbonyl curcumin analogs as L858R/T790M/C797S mutant EGFR inhibitors.Chem. Biodivers.20232011e20230108110.1002/cbdv.202301081 37793119
    [Google Scholar]
  45. SingothuS. BegumP.J. MaddiD. DevsaniN. BhandariV. Unveiling the potential of marine compounds as quorum sensing inhibitors targeting Pseudomonas aeruginosa 's LasI: A computational study using molecular docking and molecular dynamics.J. Cell. Biochem.2023124101573158610.1002/jcb.30465 37642215
    [Google Scholar]
  46. TaherkhaniA. KhodadadiP. SamieL. AzadianZ. BayatZ. Flavonoids as strong inhibitors of MAPK3: A computational drug discovery approach.Int. J. Anal. Chem.2023202311610.1155/2023/8899240 37090055
    [Google Scholar]
  47. SurendranK.M. MaranS. MurugesanT. Identification of the potential phytocompounds from Endostemon viscosus against GAPDH: A computational approach. In Silico Pharmacol.20241211110.1007/s40203‑023‑00183‑z 38344061
    [Google Scholar]
  48. ZhengJ. HaseebA. WangZ. WangH. Network pharmacology, computational biology integrated surface plasmon resonance technology reveals the mechanism of ellagic acid against rotavirus.Sci. Rep.2024141754810.1038/s41598‑024‑58301‑6 38555283
    [Google Scholar]
  49. PulikkottilA.A. KumarA. JangidK. KumarV. JaitakV. Structure-based virtual screening and molecular dynamic simulation approach for the identification of terpenoids as potential DPP-4 inhibitors.Curr. Computeraided Drug Des.202420441642910.2174/1573409919666230515160502 37190809
    [Google Scholar]
  50. ShardA. KapoorS. ChatterjeeD.R. ChowdhuryM.G. DasR. Roadmap to pyruvate kinase M2 modulation: A computational chronicle.Curr. Drug Targets202324646448310.2174/1389450124666230330103126 36998144
    [Google Scholar]
  51. SehrawatR. RatheeP. RatheeP. KhatkarS. Küpeli AkkolE. KhatkarA. In Silico and In vitro analysis of phenolic acids for identification of potential DHFR inhibitors as antimicrobial and anticancer agents.Curr. Protein Pept. Sci.2024251445810.2174/1389203724666230825142558 37641992
    [Google Scholar]
  52. ShahA.A. AhmadS. YadavM.K. RazaK. KamalM.A. AkhtarS. Structure-based virtual screening, molecular docking, molecular dynamics simulation, and metabolic reactivity studies of quinazoline derivatives for their anti-EGFR activity against tumor angiogenesis.Curr. Med. Chem.202431559561910.2174/0929867330666230309143711 36892124
    [Google Scholar]
  53. WangL. WuY. DengY. KimB. PierceL. KrilovG. LupyanD. RobinsonS. DahlgrenM.K. GreenwoodJ. RomeroD.L. MasseC. KnightJ.L. SteinbrecherT. BeumingT. DammW. HarderE. ShermanW. BrewerM. WesterR. MurckoM. FryeL. FaridR. LinT. MobleyD.L. JorgensenW.L. BerneB.J. FriesnerR.A. AbelR. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field.J. Am. Chem. Soc.201513772695270310.1021/ja512751q 25625324
    [Google Scholar]
  54. AskarzadehM. AzizianH. AdibM. Mohammadi-KhanaposhtaniM. MojtabaviS. FaramarziM.A. Sajjadi-JaziS.M. LarijaniB. HamedifarH. MahdaviM. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes.Sci. Rep.20221211056910.1038/s41598‑022‑14896‑2 35732907
    [Google Scholar]
  55. AlzainA.A. ElbadwiF.A. ShoaibT.H. SherifA.E. OsmanW. AshourA. MohamedG.A. IbrahimS.R.M. RohE.J. HassanA.H.E. Integrating computational methods guided the discovery of phytochemicals as potential Pin1 inhibitors for cancer: pharmacophore modeling, molecular docking, MM-GBSA calculations and molecular dynamics studies.Front Chem.202412133989110.3389/fchem.2024.1339891 38318109
    [Google Scholar]
  56. AntonyP. BabyB. AliA. VijayanR. Al JasmiF. Interaction of glutathione with MMACHC arginine-rich pocket variants associated with cobalamin C disease: insights from molecular modeling.Biomedicines20231112321710.3390/biomedicines11123217 38137438
    [Google Scholar]
  57. Desmond Molecular Dynamics SystemD. E. Shaw Research, Maestro-Desmond Interoperability Tools.New York, NYSchrödinger2017
    [Google Scholar]
  58. JayarajJ.M. JothimaniM. PalanisamyC.P. PentikäinenO.T. PanniparaM. Al-SehemiA.G. MuthusamyK. GopinathK. Computational study on the inhibitory effect of natural compounds against the SARS-CoV-2 proteins.Bioinorg. Chem. Appl.2022202211910.1155/2022/8635054 35340421
    [Google Scholar]
  59. HuJ. SongS. YuM. YuY. JuZ. WangY. CaoX. Molecular dynamics simulation of the effect of temperature on the conformation of ubiquitin protein.J. Mol. Model.202430513410.1007/s00894‑024‑05928‑x 38625615
    [Google Scholar]
  60. ElseginyS.A. Identifying and characterising promising small molecule inhibitors of kinesin spindle protein using ligand-based virtual screening, molecular docking, molecular dynamics and MM GBSA calculations.J. Comput. Aided Mol. Des.20243811610.1007/s10822‑024‑00553‑5 38556596
    [Google Scholar]
  61. AsgharzadehS. ShareghiB. FarhadianS. Structural alterations and inhibition of lysozyme activity upon binding interaction with rotenone: Insights from spectroscopic investigations and molecular dynamics simulation.Int. J. Biol. Macromol.2024254Pt 212783110.1016/j.ijbiomac.2023.127831 37935297
    [Google Scholar]
  62. GautamR.K. TripathiS.M. AkashS. SharmaS. SharmaK. GoyalS. BehzadS. GundamarajuR. MishraD.K. ZhangY. ShenB. SundriyalS. SinglaR.K. Unlocking the immunomodulatory potential of rosmarinic acid isolated from Punica granatum L. using bioactivity-guided approach: In Silico, In Vitro, and In Vivo approachesIn: Curr Med Chem202410.2174/0109298673291064240227094654
    [Google Scholar]
  63. Schrodinger IncSchrodinger Release 2018 version 1 QikProp.New York, NYSchrodinger, LLC2018
    [Google Scholar]
  64. ReddyrajulaR. EtikyalaU. MangaV. kumar Dalimba, U. Discovery of 1,2,3-triazole incorporated indole-piperazines as potent antitubercular agents: Design, synthesis, in vitro biological evaluation, molecular docking and ADME studies.Bioorg. Med. Chem.20249811756210.1016/j.bmc.2023.117562 38184947
    [Google Scholar]
  65. AydinB.O. AnilD.A. DemirY. AlagozM.A. Organohalogen chalcones: Design, synthesis, ADMET prediction, molecular dynamics study and inhibition effect on acetylcholinesterase and carbonic anhydrase.Mol. Divers.202410.1007/s11030‑023‑10774‑9 38170420
    [Google Scholar]
  66. ElekofehintiO.O. AdetoyiI.R. PopoolaH.O. AyodejiF.O. TaiwoF.A. AkinjiyanM.O. KoledoyeO.F. IwaloyeO. AdegboyegaA.E. Discovery of potential epidermal growth factor receptor inhibitors from black pepper for the treatment of lung cancer: An in-silico approach. In Silico Pharmacol.20241212810.1007/s40203‑024‑00197‑1 38601803
    [Google Scholar]
  67. MarafM.B. MountessouB.Y.G. Hans MerlinT.F. ArianeP. FekouaJ.N.N. Jean YvesT.B. RaoulT.T.D. Abouem A ZintchemA. BebgaG. MbouombouoN.I. RamasamiP. Virtual screening, MMGBSA, and molecular dynamics approaches for identification of natural products from South African biodiversity as potential Onchocerca volvulus pi-class glutathione S-transferase inhibitors.Heliyon2024109e2956010.1016/j.heliyon.2024.e29560 38694068
    [Google Scholar]
  68. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  69. LoganathanL. NatarajanK. MuthusamyK. Computational study on cross-talking cancer signalling mechanism of ring finger protein 146, AXIN and Tankyrase protein complex.J. Biomol. Struct. Dyn.202038175173518510.1080/07391102.2019.1696707 31760854
    [Google Scholar]
  70. HasanR. AlshammariA. AlbekairiN.A. BhuiaM.S. AfrozM. ChowdhuryR. KhanM.A. AnsariS.A. AnsariI.A. MubarakM.S. IslamM.T. Antiemetic activity of abietic acid possibly through the 5HT3 and muscarinic receptors interaction pathways.Sci. Rep.2024141664210.1038/s41598‑024‑57173‑0 38503897
    [Google Scholar]
  71. TanvirR. IjazS. SajidI. HasnainS. Multifunctional in vitro, in silico and DFT analyses on antimicrobial BagremycinA biosynthesized by Micromonospora chokoriensis CR3 from Hieracium canadense.Sci. Rep.20241411097610.1038/s41598‑024‑61490‑9 38745055
    [Google Scholar]
  72. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  73. GuY. LouC. TangY. admetSAR—A valuable tool for assisting safety evaluation.In: QSAR in Safety Evaluation and Risk Assessment; Elsevier,202418720110.1016/B978‑0‑443‑15339‑6.00004‑7
    [Google Scholar]
  74. TemkarS.S. SridharaA. MallurD.J. ShivaprakashD.I. IyengarD. DasN. CB.P. Potential aromatase inhibitors from Centella asiatica with Non-synonymous SNPS: A computational approach.Curr. Computeraided Drug Des.202420434135810.2174/1573409919666230525151933 37231718
    [Google Scholar]
  75. KumarA. GrewalA. KumarP. ChauhanR. SainiV. KumarA. Molecular docking analysis of marine phytochemicals with BACE-1.Bioinformation202420215115510.6026/973206300200151 38497071
    [Google Scholar]
/content/journals/cad/10.2174/0115734099312707240702110653
Loading
/content/journals/cad/10.2174/0115734099312707240702110653
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test