Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Si-Ni-San (SNS) is the formula prescription of Traditional Chinese Medicine (TCM) with anti-depression properties, but its underlying mechanisms remain unclear.

Objective

This study provides novel approaches for the study of TCM and offers new opportunities for exploring the pharmacological properties of SNS.

Methods

The ingredients in SNS implicated in the treatment of depression were identified and studied using network pharmacology. SwissTargetPrediction and molecular docking were used to study the interaction of SNS ingredients and their targets. The protective effect of these ingredients and their cocktail in rat pheochromocytoma cells (PC12) exposed to corticosterone (Cor) were evaluated using the CCK-8 assay, Hoechst 33342 staining, 2',7'-dichlorodihydro fluorescein diacetate (H2DCFDA) staining, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and in-cell Western analysis.

Results

The network pharmacology study showed that the HIF-1 signaling pathway was the most crucial pathway implicated in the anti-depressive property of SNS. MAPK1 (ERK2), MAPK3 (ERK1), AKT1, VEGFA, STAT3, and EGF were identified as hub target proteins in the HIF-1 signaling pathway. Quercetin, naringenin, licochalcone A, and kaempferol from SNS, which targeted the six proteins mentioned above, were used to create a cocktail. This cocktail exerted protective properties, decreased the oxidative stress in PC12 exposed to Cor, and successfully regulated the expressions of AKT1, p-AKT1, ERK1, ERK2, p-ERK1/2, STAT3, p-STAT3, and VEGFA induced by Cor exposure. The SwissTargetPrediction and molecular docking study showed that the cocktail may regulate the HIF-1 signaling pathway by directly binding with AKT1 and MAPK1.

Conclusion

The cocktail from SNS comprised of quercetin, naringenin, licochalcone A, and kaempferol exerts anti-depression potentiality by modulating the HIF-1 signaling pathway direct interactions with AKT1 and MAPK1.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099305381240613114436
2024-08-12
2026-02-01
Loading full text...

Full text loading...

References

  1. CuiR. Editorial: A systematic review of depression.Curr. Neuropharmacol.201513448010.2174/1570159X1304150831123535 26412067
    [Google Scholar]
  2. SongJ. KimY.K. Animal models for the study of depressive disorder.CNS Neurosci. Ther.202127663364210.1111/cns.13622 33650178
    [Google Scholar]
  3. OrtegaM.A. Fraile-MartínezÓ. García-MonteroC. Alvarez-MonM.A. LaheraG. MonserratJ. Llavero-ValeroM. MoraF. Rodríguez-JiménezR. Fernandez-RojoS. QuinteroJ. Alvarez De MonM. Nutrition, epigenetics, and major depressive disorder: Understanding the connection.Front. Nutr.2022986715010.3389/fnut.2022.867150 35662945
    [Google Scholar]
  4. KangS.G. ChoS.E. Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder.Int. J. Mol. Sci.2020216214810.3390/ijms21062148 32245086
    [Google Scholar]
  5. WangH. LiuJ. HeJ. HuangD. XiY. XiaoT. OuyangQ. ZhangS. WanS. ChenX. Potential mechanisms underlying the therapeutic roles of sinisan formula in depression: Based on network pharmacology and molecular docking study.Front. Psychiatry202213106348910.3389/fpsyt.2022.1063489 36440424
    [Google Scholar]
  6. DongY. TaoB. XueX. FengC. RenY. MaH. ZhangJ. SiY. ZhangS. LiuS. LiH. ZhouJ. LiG. WangZ. XieJ. ZhuZ. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology.BMC Complement. Med. Ther.202121122210.1186/s12906‑021‑03389‑w 34479552
    [Google Scholar]
  7. ZhangM. ZhangY. SunH. NiH. SunJ. YangX. ChenW. ZhaoW. ZhongX. HeC. AoH. HeS. Sinisan protects primary hippocampal neurons against corticosterone by inhibiting autophagy via the PI3K/Akt/mTOR pathway.Front. Psychiatry20211262705610.3389/fpsyt.2021.627056 34122166
    [Google Scholar]
  8. LengL. ZhuangK. LiuZ. HuangC. GaoY. ChenG. LinH. HuY. WuD. ShiM. XieW. SunH. ShaoZ. LiH. ZhangK. MoW. HuangT.Y. XueM. YuanZ. ZhangX. BuG. XuH. XuQ. ZhangJ. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation.Neuron20181003551563.e710.1016/j.neuron.2018.08.031 30220511
    [Google Scholar]
  9. JanniniT.B. LorenzoG.D. BianciardiE. NioluC. ToscanoM. CioccaG. JanniniE.A. SiracusanoA. Off-label uses of selective serotonin reuptake inhibitors (SSRIs).Curr. Neuropharmacol.202220469371210.2174/1570159X19666210517150418 33998993
    [Google Scholar]
  10. DunhamK.E. VentonB.J. SSRI antidepressants differentially modulate serotonin reuptake and release in Drosophila.J. Neurochem.2022162540441610.1111/jnc.15658 35736504
    [Google Scholar]
  11. EdinoffA.N. FortJ.M. WooJ.J. CauseyC.D. BurroughsC.R. CornettE.M. KayeA.M. KayeA.D. Selective serotonin reuptake inhibitors and clozapine: Clinically relevant interactions and considerations.Neurol. Int.202113344546310.3390/neurolint13030044 34564289
    [Google Scholar]
  12. RothmoreJ. Antidepressant‐induced sexual dysfunction.Med. J. Aust.2020212732933410.5694/mja2.50522 32172535
    [Google Scholar]
  13. ShortB. FongJ. GalvezV. ShelkerW. LooC.K. Side-effects associated with ketamine use in depression: A systematic review.Lancet Psychiatry201851657810.1016/S2215‑0366(17)30272‑9 28757132
    [Google Scholar]
  14. FengS.T. WangX.L. WangY.T. YuanY.H. LiZ.P. ChenN.H. WangZ.Z. ZhangY. Efficacy of traditional chinese medicine combined with selective serotonin reuptake inhibitors on the treatment for parkinson’s disease with depression: A systematic review and meta-analysis.Am. J. Chin. Med.202149362764310.1142/S0192415X21500282 33657988
    [Google Scholar]
  15. ZhangY. GuoQ. LiQ. RenW. TangS. WangS. LiangR. LiD. ZhangY. XuH. YangH. Main active constituent identification in Guanxinjing capsule, a traditional Chinese medicine, for the treatment of coronary heart disease complicated with depression.Acta Pharmacol. Sin.201839697598710.1038/aps.2017.117 28858293
    [Google Scholar]
  16. WeiX. HouW. LiangJ. FangP. DouB. WangZ. SaiJ. XuT. MaC. ZhangQ. ChengF. WangX. WangQ. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease.Front. Pharmacol.20211269370110.3389/fphar.2021.693701 34512330
    [Google Scholar]
  17. CaiY. XuB. ZhouF. WuJ. LiS. ZhengQ. LiY. LiX. GaoF. DongS. LiuR. Si-Ni-San ameliorates chronic colitis by modulating type I interferons-mediated inflammation.Phytomedicine20218415349510.1016/j.phymed.2021.153495 33611210
    [Google Scholar]
  18. ZongY. ChenT. DongH. ZhuL. JuW. Si-Ni-San prevents reserpine-induced depression by inhibiting inflammation and regulating CYP450 enzymatic activity.Front. Pharmacol.202010151810.3389/fphar.2019.01518 32009949
    [Google Scholar]
  19. LiJ. WuK. ZhongY. KuangJ. HuangN. GuoX. DuH. GuoC. LiR. ZhuX. ZhangT. GongL. ShengL. SunR. Si-Ni-SAN ameliorates obesity through AKT/AMPK/HSL pathway-mediated lipolysis: Network pharmacology and experimental validation J. Ethnopharmacol 2023302Pt A115892
    [Google Scholar]
  20. WangS. TangC. ZhaoH. ShenP. LinC. ZhuY. HanD. Network pharmacological analysis and experimental validation of the mechanisms of action of si-ni-san against liver fibrosis.Front. Pharmacol.20211265611510.3389/fphar.2021.656115 34276360
    [Google Scholar]
  21. DengD. CuiY. GanS. XieZ. CuiS. CaoK. WangS. ShiG. YangL. BaiS. ShiY. LiuZ. ZhaoJ. ZhangR. Sinisan alleviates depression-like behaviors by regulating mitochondrial function and synaptic plasticity in maternal separation rats.Phytomedicine202210615439510.1016/j.phymed.2022.154395 36103769
    [Google Scholar]
  22. ChiX. WangS. BalochZ. ZhangH. LiX. ZhangZ. ZhangH. DongZ. LuY. YuH. MaK. Research progress on classical traditional Chinese medicine formula Lily Bulb and Rehmannia Decoction in the treatment of depression.Biomed. Pharmacother.201911210861610.1016/j.biopha.2019.108616 30780102
    [Google Scholar]
  23. TianT. XuX. LiX. ZhangW. LuH. Precision-characterization and quantitative determination of main compounds in Si-Ni-San with UHPLC-MS/MS based targeted-profiling method.J. Pharm. Biomed. Anal.202119411381610.1016/j.jpba.2020.113816 33339640
    [Google Scholar]
  24. DaiW. FengK. SunX. XuL. WuS. RahmandK. JiaD. HanT. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use.J. Ethnopharmacol.202228511469210.1016/j.jep.2021.114692 34742864
    [Google Scholar]
  25. YeL. WuJ. LiuZ. DengD. BaiS. YangL. XuanY. LiuZ. ShiY. LiuZ. ZhangR. ZhaoJ. Si-Ni-San alleviates early life stress-induced depression-like behaviors in adolescence via modulating Rac1 activity and associated spine plasticity in the nucleus accumbens.Front. Pharmacol.202314127412110.3389/fphar.2023.1274121 38026979
    [Google Scholar]
  26. WangW. YaoQ. TengF. CuiJ. DongJ. WeiY. Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges.Biomed. Pharmacother.202113711138310.1016/j.biopha.2021.111383 33761604
    [Google Scholar]
  27. HuangK. ZhangP. ZhangZ. YounJ.Y. WangC. ZhangH. CaiH. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms.Pharmacol. Ther.202122510784310.1016/j.pharmthera.2021.107843 33811957
    [Google Scholar]
  28. SunJ. SunF. YanB. LiJ. XinD. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in Mycoplasma pneumoniae pneumonia treatment.Biomed. Pharmacother.202012510990010.1016/j.biopha.2020.109900 32028237
    [Google Scholar]
  29. LiuY. YuL. ZhangJ. XieD. ZhangX. YuJ. Network pharmacology-based and molecular docking-based analysis of suanzaoren decoction for the treatment of parkinson’s disease with sleep disorder.BioMed Res. Int.2021202111210.1155/2021/1752570 34660782
    [Google Scholar]
  30. LiQ. JiaC. WuH. LiaoY. YangK. LiS. ZhangJ. WangJ. LiG. GuanF. LeungE. YuanZ. HuaQ. PanR.Y. Nao Tan Qing ameliorates Alzheimer’s disease-like pathology by regulating glycolipid metabolism and neuroinflammation: A network pharmacology analysis and biological validation.Pharmacol. Res.202218510648910.1016/j.phrs.2022.106489 36228869
    [Google Scholar]
  31. LiX. WeiS. NiuS. MaX. LiH. JingM. ZhaoY. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis.Comput. Biol. Med.202214410538910.1016/j.compbiomed.2022.105389 35303581
    [Google Scholar]
  32. GuoX. WuY. ZhangC. WuL. QinL. LiuT. Network pharmacology analysis of zishenwan for diabetic nephropathy and experimental verification of its anti-inflammatory mechanism.Drug Des. Devel. Ther.2021151577159410.2147/DDDT.S297683 33883881
    [Google Scholar]
  33. ShengQ. DuR. MaC. ZhouY. ShenX. HouX. XuL. LiL. DengX. WangJ. NMPA-approved traditional Chinese medicine-Pingwei Pill: New indication for colistin recovery against MCR-positive bacteria infection.Chin. Med.202116110610.1186/s13020‑021‑00518‑y 34663394
    [Google Scholar]
  34. YanZ.Y. JiaoH.Y. ChenJ.B. ZhangK.W. WangX.H. JiangY.M. LiuY.Y. XueZ. MaQ.Y. LiX.J. ChenJ.X. Antidepressant mechanism of traditional chinese medicine formula xiaoyaosan in cums-induced depressed mouse model via RIPK1-RIPK3-MLKL mediated necroptosis based on network pharmacology analysis.Front. Pharmacol.20211277356210.3389/fphar.2021.773562 34867405
    [Google Scholar]
  35. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.201920184331
    [Google Scholar]
  36. Vidal-LimonA. Aguilar-ToaláJ.E. LiceagaA.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides.J. Agric. Food Chem.202270493494310.1021/acs.jafc.1c06110 34990125
    [Google Scholar]
  37. MaZ. ZouX. MDock: A suite for molecular inverse docking and target prediction.Methods Mol. Biol.2021226631332210.1007/978‑1‑0716‑1209‑5_18 33759135
    [Google Scholar]
  38. PiñeroJ. SaüchJ. SanzF. FurlongL.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data.Comput. Struct. Biotechnol. J.2021192960296710.1016/j.csbj.2021.05.015 34136095
    [Google Scholar]
  39. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  40. HamoshA. ScottA.F. AmbergerJ. BocchiniC. ValleD. McKusickV.A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.2002301525510.1093/nar/30.1.52 11752252
    [Google Scholar]
  41. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac963 36300620
    [Google Scholar]
  42. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  43. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  44. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  45. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  46. LiuZ.W. LuoZ.H. MengQ.Q. ZhongP.C. HuY.J. ShenX.L. Network pharmacology-based investigation on the mechanisms of action of Morinda officinalis How. in the treatment of osteoporosis.Comput. Biol. Med.202012710407410.1016/j.compbiomed.2020.104074 33126122
    [Google Scholar]
  47. SzklarczykD. MorrisJ.H. CookH. KuhnM. WyderS. SimonovicM. SantosA. DonchevaN.T. RothA. BorkP. JensenL.J. von MeringC. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible.Nucleic Acids Res.201745D1D362D36810.1093/nar/gkw937 27924014
    [Google Scholar]
  48. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  49. DainaA. MichielinO. ZoeteV. Swisstargetprediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  50. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  51. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  52. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  53. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  54. WuZ. ZhaoX.M. ChenL. A systems biology approach to identify effective cocktail drugs. BMC Syst Biol.20104S2,S710.1186/1752‑0509‑4‑S2‑S7
    [Google Scholar]
  55. ZhangJ. ZhuY. FanX. ZhangB. Efficacy-oriented compatibility for component-based Chinese medicine.Acta Pharmacol. Sin.201536665465810.1038/aps.2015.8 25864650
    [Google Scholar]
  56. LiuY. ChangD. ZhouX. Development of novel herbal compound formulations targeting neuroinflammation: Network pharmacology, molecular docking, and experimental verification.Evid. Based Complement. Alternat. Med.2023202311710.1155/2023/2558415 37266321
    [Google Scholar]
  57. ZhangQ. GaoL. HuangS. LiangY. HuJ. ZhangY. WeiS. HuX. Cocktail of Astragalus Membranaceus and Radix Trichosanthis suppresses melanoma tumor growth and cell migration through regulation of akt-related signaling pathway.Front. Pharmacol.20221388021510.3389/fphar.2022.880215 35721145
    [Google Scholar]
  58. CuiZ. ZhaoX. AmevorF.K. DuX. WangY. LiD. ShuG. TianY. ZhaoX. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.Front. Immunol.20221394332110.3389/fimmu.2022.943321 35935939
    [Google Scholar]
  59. AgrawalK. ChakrabortyP. DewanjeeS. ArfinS. DasS.S. DeyA. MoustafaM. MishraP.C. JafariS.M. JhaN.K. JhaS.K. KumarD. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders.Neurosci. Biobehav. Rev.202314410495510.1016/j.neubiorev.2022.104955 36395983
    [Google Scholar]
  60. GeC. WangS. WuX. LeiL. Quercetin mitigates depression-like behavior via the suppression of neuroinflammation and oxidative damage in corticosterone-induced mice.J. Chem. Neuroanat.202313210231310.1016/j.jchemneu.2023.102313 37468078
    [Google Scholar]
  61. HanX. XuT. FangQ. ZhangH. YueL. HuG. SunL. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy.Redox Biol.20214410201010.1016/j.redox.2021.102010 34082381
    [Google Scholar]
  62. PeriferakisA. PeriferakisK. BadarauI.A. PetranE.M. PopaD.C. CaruntuA. CostacheR.S. ScheauC. CaruntuC. CostacheD.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications.Int. J. Mol. Sci.202223231505410.3390/ijms232315054 36499380
    [Google Scholar]
  63. Silva dos SantosJ. Gonçalves CirinoJ.P. de Oliveira CarvalhoP. OrtegaM.M. The pharmacological action of kaempferol in central nervous system diseases: A review.Front. Pharmacol.20211156570010.3389/fphar.2020.565700 33519431
    [Google Scholar]
  64. Rahul, Neurodegenerative Diseases and Flavonoids: Special Reference to Kaempferol.CNS Neurol. Disord. Drug Targets2021204327342
    [Google Scholar]
  65. EmranT.B. IslamF. NathN. SutradharH. DasR. MitraS. AlshahraniM.M. AlhasaniahA.H. SharmaR. Naringin and naringenin polyphenols in neurological diseases: Understandings from a therapeutic viewpoint.Life20221319910.3390/life13010099 36676048
    [Google Scholar]
  66. LiuX. WeiF. LiuH. ZhaoS. DuG. QinX. Integrating hippocampal metabolomics and network pharmacology deciphers the antidepressant mechanisms of Xiaoyaosan.J. Ethnopharmacol.202126811354910.1016/j.jep.2020.113549 33152435
    [Google Scholar]
  67. ShibataT. YamagataH. UchidaS. OtsukiK. HobaraT. HiguchiF. AbeN. WatanabeY. The alteration of hypoxia inducible factor-1 (HIF-1) and its target genes in mood disorder patients.Prog. Neuropsychopharmacol. Biol. Psychiatry20134322222910.1016/j.pnpbp.2013.01.003 23333658
    [Google Scholar]
  68. LiG. ZhaoM. ChengX. ZhaoT. FengZ. ZhaoY. FanM. ZhuL. FG-4592 improves depressive-like behaviors through HIF-1-mediated neurogenesis and synapse plasticity in rats.Neurotherapeutics202017266467510.1007/s13311‑019‑00807‑3 31820273
    [Google Scholar]
  69. WangZ. ChengY. LuY. SunG. PeiL. Baicalin coadministration with lithium chloride enhanced neurogenesis <i>via</i> gsk3β pathway in corticosterone induced PC-12 cells.Biol. Pharm. Bull.202245560561310.1248/bpb.b21‑01046 35296580
    [Google Scholar]
  70. ZhangL. LuR.R. XuR.H. WangH.H. FengW.S. ZhengX.K. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors.Heliyon202395e1561810.1016/j.heliyon.2023.e15618 37215924
    [Google Scholar]
  71. ChenX. ShenJ. ZhouQ. JinX. LiuH. GaoR. AstragalosideV.I. Astragaloside VI ameliorates post-stroke depression via upregulating the NRG-1-Mediated MEK/ERK pathway.Pharmaceuticals20221512155110.3390/ph15121551 36559001
    [Google Scholar]
  72. Figueroa-HallL.K. PaulusM.P. SavitzJ. Toll-like receptor signaling in depression.Psychoneuroendocrinology202012110484310.1016/j.psyneuen.2020.104843 32911436
    [Google Scholar]
  73. DeanB. GibbonsA.S. TawadrosN. BrooksL. EverallI.P. ScarrE. Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders.Mol. Psychiatry201318776777310.1038/mp.2012.95 22801413
    [Google Scholar]
  74. Güvenç PaltunB. KaskiS. MamitsukaH. MamitsukaH. Machine learning approaches for drug combination therapies.Brief. Bioinform.2021226bbab29310.1093/bib/bbab293 34368832
    [Google Scholar]
/content/journals/cad/10.2174/0115734099305381240613114436
Loading
/content/journals/cad/10.2174/0115734099305381240613114436
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AKT1; Cocktail; depression; HIF-1 signaling pathway; network pharmacology; Si-Ni-San
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test