Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Drug-resistant represents a substantial healthcare challenge worldwide, and its range of available therapeutic options continues to diminish progressively. Thus, this study aimed to identify potential inhibitors against FemA, a crucial protein involved in the cell wall biosynthesis of .

Materials and Methods

The screening process involved a comprehensive structure-based virtual screening on the StreptomDB database to identify ligands with potential inhibitory effects on FemA using AutoDock Vina. The most desirable ligands with the highest binding affinity and pharmacokinetic properties were selected. Two ligands with the highest number of hydrogen bonds and hydrophobic interactions were further analyzed by molecular dynamics (MD) using the GROMACS version 2018 simulation package.

Results

Six H-donor conserved residues were selected as protein active sites, including Arg-220, Tyr-38, Gln-154, Asn-73, Arg-74, and Thr-24. Through virtual screening, a total of nine compounds with the highest binding affinity to the FemA protein were identified. Frigocyclinone and CHNO exhibited the highest binding affinity and demonstrated favorable pharmacokinetic properties. Molecular dynamics analysis of the FemA-ligand complexes further indicated desirable stability and reliability of complexes, reinforcing the potential efficacy of these ligands as inhibitors of FemA protein.

Conclusion

Our findings suggest that Frigocyclinone and CHNO are promising inhibitors of FemA in . To further validate these computational results, experimental studies are planned to confirm the inhibitory effects of these compounds on various strains. Combining computational screening with experimental validation contributes valuable insights to the field of drug discovery in comparison to the classical drug discovery approaches.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099297360240312043642
2024-03-20
2025-10-17
Loading full text...

Full text loading...

References

  1. KumarS. Antimicrobial resistance: A top ten global public health threat.EClinicalMedicine20214110122110.1016/j.eclinm.2021.101221 34877512
    [Google Scholar]
  2. Mlynarczyk-BonikowskaB. KowalewskiC. Krolak-UlinskaA. MaruszaW. Molecular mechanisms of drug resistance in Staphylococcus aureus.Int. J. Mol. Sci.20222315808810.3390/ijms23158088 35897667
    [Google Scholar]
  3. Methicillin-resistant Staphylococcus aureus (MRSA) Available from: https://www.cdc.gov/mrsa/index.html
    [Google Scholar]
  4. TychalaA. ProtonotariouE. MeletisG. TsohaA. MantzanaP. VasilakiO. KagkalouG. SkouraL. In vitro activity of ceftaroline against methicillin-resistant and methicillin-susceptible Staphylococcus aureus clinical isolates from a tertiary hospital in Greece.New Microbiol.2021442125128 34151995
    [Google Scholar]
  5. SiddiquiA.H. KoiralaJ. Methicillin-resistant Staphylococcus aureus.In: StatPearls.Treasure Island, FLStatPearls Publishing2023https://www.ncbi.nlm.nih.gov/books/NBK482221/
    [Google Scholar]
  6. OkwuM.U. OlleyM. AkpokaA.O. IzevbuwaO.E. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review.AIMS Microbiol.20195211713710.3934/microbiol.2019.2.117 31384707
    [Google Scholar]
  7. YuW. MacKerellA.D. Jr Computer-aided drug design methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_5 27873247
    [Google Scholar]
  8. BrogiS. RamalhoT.C. KucaK. Medina-FrancoJ.L. ValkoM. Editorial: In silico methods for drug design and discovery.Front Chem.2020861210.3389/fchem.2020.00612 32850641
    [Google Scholar]
  9. Ruiz-GarciaA. BermejoM. MossA. CasaboV.G. Pharmacokinetics in drug discovery.J. Pharm. Sci.200897265469010.1002/jps.21009 17630642
    [Google Scholar]
  10. GuptaP.S.S. BhatH.R. BiswalS. RanaM.K. Computer-aided discovery of bis-indole derivatives as multi-target drugs against cancer and bacterial infections: DFT, docking, virtual screening, and molecular dynamics studies.J. Mol. Liq.202032011437510.1016/j.molliq.2020.114375
    [Google Scholar]
  11. LiX. XiongY. FanX. FengP. TangH. ZhouT. The role of femA regulating gene on methicillin-resistant Staphylococcus aureus clinical isolates.Med. Mal. Infect.201242521822510.1016/j.medmal.2008.09.031 22609268
    [Google Scholar]
  12. BeigM. EbrahimiT. GoodarziN.N. FereshtehS. HabibiM. BadmastiF. Introduction of novel drug targets against Staphylococcus aureus and proposing putative inhibitors against adenine N1 (m1A22)-tRNA Methyltransferase (TrmK) using computer-aided drug discovery.Curr. Pharm. Des.202329141135114710.2174/1381612829666230428105643 37132149
    [Google Scholar]
  13. RahmanS. DasA.K. Integrated multi-omics, virtual screening and molecular docking analysis of methicillin-resistant Staphylococcus aureus USA300 for the identification of potential therapeutic targets: An in-silico approach.Int. J. Pept. Res. Ther.20212742735275510.1007/s10989‑021‑10287‑9 34548853
    [Google Scholar]
  14. KumarS. StecherG. LiM. KnyazC. TamuraK. MEGA X: Molecular evolutionary genetics analysis across computing platforms.Mol. Biol. Evol.20183561547154910.1093/molbev/msy096 29722887
    [Google Scholar]
  15. CrooksG.E. HonG. ChandoniaJ.M. BrennerS.E. WebLogo: A sequence logo generator.Genome Res.20041461188119010.1101/gr.849004 15173120
    [Google Scholar]
  16. BensonT.E. PrinceD.B. MutchlerV.T. CurryK.A. HoA.M. SarverR.W. HagadornJ.C. ChoiG.H. GarlickR.L. X-ray crystal structure of Staphylococcus aureus FemA.Structure20021081107111510.1016/S0969‑2126(02)00807‑9 12176388
    [Google Scholar]
  17. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChaoH. ChenL. CraigP.A. CrichlowG.V. DalenbergK. DuarteJ.M. DuttaS. FayaziM. FengZ. FlattJ.W. GanesanS. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. HenryJ. HudsonB.P. KhokhriakovI. LawsonC.L. LiangY. LoweR. PeisachE. PersikovaI. PiehlD.W. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. VallatB. VoigtM. WebbB. WestbrookJ.D. WhetstoneS. YoungJ.Y. ZalevskyA. ZardeckiC. RCSB protein data bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  18. LiQ. ShahS. Structure-based virtual screening.In: Protein Bioinformatics: From Protein Modifications and Networks to Proteomics. WuC.H. ArighiC.N. RossK.E. New York, NYSpringer New York201711112410.1007/978‑1‑4939‑6783‑4_5
    [Google Scholar]
  19. MoumbockA.F.A. GaoM. QaseemA. LiJ. KirchnerP.A. NdingkokharB. BekonoB.D. SimobenC.V. BabiakaS.B. MalangeY.I. SauterF. ZierepP. Ntie-KangF. GüntherS. StreptomeDB 3.0: An updated compendium of streptomycetes natural products.Nucleic Acids Res.202149D1D600D60410.1093/nar/gkaa868 33051671
    [Google Scholar]
  20. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  21. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  22. GuanL. YangH. CaiY. SunL. DiP. LiW. LiuG. TangY. ADMET-score – A comprehensive scoring function for evaluation of chemical drug-likeness.MedChemComm201910114815710.1039/C8MD00472B 30774861
    [Google Scholar]
  23. BenetL.Z. HoseyC.M. UrsuO. OpreaT.I. BDDCS, the Rule of 5 and drugability.Adv. Drug Deliv. Rev.2016101899810.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  24. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  25. KaminskiG. JorgensenW.L. Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids.J. Phys. Chem.199610046180101801310.1021/jp9624257
    [Google Scholar]
  26. JørgensenC.K. ReisfeldR. Judd-Ofelt parameters and chemical bonding.J. Less Common Met.198393110711210.1016/0022‑5088(83)90454‑X
    [Google Scholar]
  27. JahantighH. AhmadiN. LovreglioP. StufanoA. EnayatkhaniM. ShahbaziB. AhmadiK. Repurposing antiviral drugs against HTLV-1 protease by molecular docking and molecular dynamics simulation.J. Biomol. Struct. Dyn.202211010.1080/07391102.2022.2078411 35612907
    [Google Scholar]
  28. CardosoW.B. MendanhaS.A. Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors.J. Mol. Struct.2021122512914310.1016/j.molstruc.2020.129143 32863430
    [Google Scholar]
  29. GhahremanianS. RashidiM.M. RaeisiK. ToghraieD. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review.J. Mol. Liq.202235411890110.1016/j.molliq.2022.118901 35309259
    [Google Scholar]
  30. JiangZ. YouL. DouW. SunT. XuP. Effects of an electric field on the conformational transition of the protein: A molecular dynamics simulation study.Polymers 201911228210.3390/polym11020282 30960266
    [Google Scholar]
  31. ParidaP.K. PaulD. ChakravortyD. The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS‐COV ‐2 targets.Phytother. Res.202034123420343310.1002/ptr.6868 32969524
    [Google Scholar]
  32. WangZ. PanH. SunH. KangY. LiuH. CaoD. HouT. fastDRH: A webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB(GB)SA computation.Brief. Bioinform.2022235bbac20110.1093/bib/bbac201 35580866
    [Google Scholar]
  33. Koh Jing JieA. HusseinM. RaoG.G. LiJ. VelkovT. Drug repurposing approaches towards defeating multidrug-resistant gram-negative pathogens: Novel polymyxin/non-antibiotic combinations.Pathogens20221112142010.3390/pathogens11121420 36558754
    [Google Scholar]
  34. SahooB.M. Ravi KumarB.V.V. SrutiJ. MahapatraM.K. BanikB.K. BorahP. Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection.Front. Mol. Biosci.2021862814410.3389/fmolb.2021.628144 33718434
    [Google Scholar]
  35. GiuliodoriA.M. SpurioR. MilónP. FabbrettiA. Antibiotics targeting the 30S ribosomal subunit: a lesson from nature to find and develop new drugs.Curr. Top. Med. Chem.201918242080209610.2174/1568026618666181025092546 30360712
    [Google Scholar]
  36. AthamnaA. AthamnaM. MedlejB. BastD.J. RubinsteinE. In vitro post-antibiotic effect of fluoroquinolones, macrolides, -lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on Bacillus anthracis.J. Antimicrob. Chemother.200453460961510.1093/jac/dkh130 14998982
    [Google Scholar]
  37. OselusiS.O. FadakaA.O. WyckoffG.J. EgieyehS.A. Computational target-based screening of anti-mrsa natural products reveals potential multitarget mechanisms of action through peptidoglycan synthesis proteins.ACS Omega2022742378963790610.1021/acsomega.2c05061 36312373
    [Google Scholar]
  38. TomodaH. New approaches to drug discovery for combating MRSA.Chem. Pharm. Bull.(Tokyo)201664210411110.1248/cpb.c15‑00743 26833438
    [Google Scholar]
  39. NaoremR.S. PangabamB.D. BoraS.S. GoswamiG. BarooahM. HazarikaD.J. FeketeC. Identification of putative vaccine and drug targets against the methicillin-resistant Staphylococcus aureus by reverse vaccinology and subtractive genomics approaches.Molecules2022277208310.3390/molecules27072083 35408485
    [Google Scholar]
  40. RajuR. PiggottA.M. HuangX.C. CaponR.J. Nocardioazines: A novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein.Org. Lett.201113102770277310.1021/ol200904v 21513295
    [Google Scholar]
  41. RooversM. KaminskaK.H. TkaczukK.L. GigotD. DroogmansL. BujnickiJ.M. The YqfN protein of Bacillus subtilis is the tRNA: m 1 A22 methyltransferase (TrmK).Nucleic Acids Res.200836103252326210.1093/nar/gkn169 18420655
    [Google Scholar]
  42. KoyamaN. TokuraY. MünchD. SahlH.G. SchneiderT. ShibagakiY. IkedaH. TomodaH. The nonantibiotic small molecule cyslabdan enhances the potency of β-lactams against MRSA by inhibiting pentaglycine interpeptide bridge synthesis.PLoS One2012711e4898110.1371/journal.pone.0048981 23166602
    [Google Scholar]
  43. RahmanS. NathS. MohanU. DasA.K. Targeting staphylococcal cell–wall biosynthesis protein femx through steered molecular dynamics and drug-repurposing approach.ACS Omega2023832292922930110.1021/acsomega.3c02691 37599983
    [Google Scholar]
  44. KoppU. RoosM. WeckeJ. LabischinskiH. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: A novel antistaphylococcal target?Microb. Drug Resist.199621294110.1089/mdr.1996.2.29 9158720
    [Google Scholar]
  45. TsukamotoS. Recent progress in study on the biologically-active natural products.Chem. Pharm. Bull.201664211211810.1248/cpb.c15‑00768 26833439
    [Google Scholar]
  46. PatilR. DasS. StanleyA. YadavL. SudhakarA. VarmaA.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.PLoS One201058e1202910.1371/journal.pone.0012029 20808434
    [Google Scholar]
  47. BruntnerC. BinderT. Pathom-areeW. GoodfellowM. BullA.T. PotteratO. PuderC. HörerS. SchmidA. BolekW. WagnerK. MihmG. FiedlerH.P. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica.J. Antibiot.200558534634910.1038/ja.2005.43 16060387
    [Google Scholar]
  48. WangL. WangM. FuY. HuangP. KongD. NiuG. Engineered biosynthesis of thaxtomin phytotoxins.Crit. Rev. Biotechnol.20204081163117110.1080/07388551.2020.1807461 32819175
    [Google Scholar]
  49. WinnM. FrancisD. MicklefieldJ. De novo biosynthesis of “non‐natural” thaxtomin phytotoxins.Angew. Chem. Int. Ed.201857236830683310.1002/anie.201801525 29603527
    [Google Scholar]
/content/journals/cad/10.2174/0115734099297360240312043642
Loading
/content/journals/cad/10.2174/0115734099297360240312043642
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test