Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Hyperlipidemia is characterized by an abnormally elevated serum cholesterol, triglycerides, or both. The relationship between an elevated level of LDL and cardiovascular diseases is well-established. Cholesteryl ester transfer protein (CETP) is an enzyme that moves cholesterol esters and triglycerides between LDL, VLDL, and HDL. CETP inhibition leads to a reduction in cardiovascular disease by raising HDL and minimizing LDL.

Objective

This study synthesized ten -chlorinated benzene sulfonamides 6a-6j and explored their structure-activity relationship.

Methods

The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and HR-MS. Moreover, cheminformatics analyses included pharmacophore mapping, LibDock studies, and cheminformatics characterization using 2-dimensional (2D) molecular descriptors and principal component analysis.

Results

Based on functional CETP assays, compounds , , and demonstrated the strongest inhibitory activities against CETP, reaching 100% inhibition. The inhibitory activity of compounds - and - ranged from 47.5% to 96.5% at 10 µM concentration. Pharmacophore mapping results suggested CETP inhibitory action, while the docking scores and calculated binding energies predicted favoring binding at the CETP active site. Best-scoring docking poses predicted critical hydrophobic features corresponding to key interactions with His232 and Cys13. Cheminformatics analysis using 2D molecular descriptors indicated that the synthesized compounds span various physicochemical properties and drug-likeness.

Conclusion

It was found that a chloro moiety at the -position, or a nitro group at the and -positions, improves the CETP inhibitory activity of synthesized analogs. Computational studies suggest the formation of stable ligand-protein complexes between compounds - and CETP.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099292078240218095540
2024-02-27
2025-10-17
Loading full text...

Full text loading...

References

  1. Cardiovascular fact sheet.2021Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed Apr. 21, 2022).
  2. SchmidtA.F. HuntN.B. Gordillo-MarañónM. CharoenP. DrenosF. KivimakiM. LawlorD.A. GiambartolomeiC. PapacostaO. ChaturvediN. BisJ.C. O’DonnellC.J. WannametheeG. WongA. PriceJ.F. HughesA.D. GauntT.R. FranceschiniN. Mook-KanamoriD.O. ZwierzynaM. SofatR. HingoraniA.D. FinanC. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease.Nat. Commun.2021121564010.1038/s41467‑021‑25703‑334561430
    [Google Scholar]
  3. Johns Hopkins Medicine Atherosclerosis2022Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/atherosclerosis (accessed May 04, 2022).
  4. NIH Atherosclerosis - What Is Atherosclerosis? NHLBI, NIH.2022Available from: https://www.nhlbi.nih.gov/health/atherosclerosis (accessed May 04, 2022).
  5. LiJ. FuX. YangR. ZhangW. Atherosclerosis vascular endothelial secretion dysfunction and smooth muscle cell proliferation.J. Healthc. Eng.2022202211310.1155/2022/927187935310191
    [Google Scholar]
  6. GómezA. TacheauA. Le Floc’hS. PettigrewR.I. CloutierG. FinetG. OhayonJ. Intravascular ultrasound imaging of human coronary atherosclerotic plaque: Novel morpho-elastic biomarkers of instability.Biomech. Coron. Atheroscler. Plaque2021446548910.1016/B978‑0‑12‑817195‑0.00020‑2
    [Google Scholar]
  7. JarabA.S. AlefishatE.A. Al-QeremW. MukattashT.L. Al-HajjehD.M. Lipid control and its associated factors among patients with dyslipidaemia in Jordan.Int. J. Clin. Pract.2021755e1400010.1111/ijcp.1400033400313
    [Google Scholar]
  8. RCSB PDB - 2OBD: Crystal structure of cholesteryl ester transfer protein.2007Available from: https://www.rcsb.org/structure/2obd (accessed May 07, 2022).
  9. ChirasaniV.R. SenapatiS. How cholesteryl ester transfer protein can also be a potential triglyceride transporter.Sci. Rep.201771615910.1038/s41598‑017‑05449‑z28733595
    [Google Scholar]
  10. YangZ. HaoD. CheY. ZhangL. ZhangS. Structural basis and functional mechanism of lipoprotein in cholesterol transport.Cholest. - Good, Bad HeartInTech201810.5772/intechopen.76015
    [Google Scholar]
  11. QiuX. MistryA. AmmiratiM.J. ChrunykB.A. ClarkR.W. CongY. CulpJ.S. DanleyD.E. FreemanT.B. GeogheganK.F. GrifforM.C. HawrylikS.J. HaywardC.M. HensleyP. HothL.R. KaramG.A. LiraM.E. LloydD.B. McGrathK.M. Stutzman-EngwallK.J. SubashiA.K. SubashiT.A. ThompsonJ.F. WangI.K. ZhaoH. SeddonA.P. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules.Nat. Struct. Mol. Biol.200714210611310.1038/nsmb119717237796
    [Google Scholar]
  12. FilippatosT.D. KeiA. ElisafM.S. Anacetrapib, a new CETP inhibitor: The new tool for the management of dyslipidemias?Diseases201754212810.3390/diseases504002128961179
    [Google Scholar]
  13. FeingoldK.R. GrunfeldC.K Introduction to lipids and lipoproteins.Endotext2021Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/ (Accessed: May 07, 2022).
    [Google Scholar]
  14. ArmitageJ. HolmesM.V. PreissD. Cholesteryl ester transfer protein inhibition for preventing cardiovascular events.J. Am. Coll. Cardiol.201973447748710.1016/j.jacc.2018.10.07230704580
    [Google Scholar]
  15. Abu KhalafR. Al-RawashdehS. SabbahD. Abu SheikhaG. Molecular docking and pharmacophore modeling studies of fluorinated benzamides as potential CETP inhibitors.Med. Chem.201713323925310.2174/157340641266616110412104227823564
    [Google Scholar]
  16. ShortL. LaV.T. PatelM. PaiR.G. Primary and secondary prevention of CAD: A review.Int. J. Angiol.2021311162635221848
    [Google Scholar]
  17. du SouichP. RoedererG. DufourR. Myotoxicity of statins: Mechanism of action.Pharmacol. Ther.201717511610.1016/j.pharmthera.2017.02.02928223230
    [Google Scholar]
  18. LiuA. WuQ. GuoJ. AresI. RodríguezJ.L. Martínez-LarrañagaM.R. YuanZ. AnadónA. WangX. MartínezM.A. Statins: Adverse reactions, oxidative stress and metabolic interactions.Pharmacol. Ther.2019195548410.1016/j.pharmthera.2018.10.00430321555
    [Google Scholar]
  19. Meor Anuar ShuhailiM.F.R. SamsudinI.N. StanslasJ. HasanS. ThambiahS.C. Effects of different types of statins on lipid profile: A perspective on asians.Int. J. Endocrinol. Metab.2017In PressIn Presse4331910.5812/ijem.4331928848611
    [Google Scholar]
  20. MurphyC. DeplazesE. CranfieldC.G. GarciaA. The role of structure and biophysical properties in the pleiotropic effects of statins.Int. J. Mol. Sci.20202122874510.3390/ijms2122874533228116
    [Google Scholar]
  21. SinghG. CorreaR. Fibrate medications.StatPearlsStatPearls PublishingTreasure Island (FL)202231613536
    [Google Scholar]
  22. KimN.H. KimS.G. Fibrates revisited: Potential role in cardiovascular risk reduction.Diabetes Metab. J.202044221322110.4093/dmj.2020.000132347023
    [Google Scholar]
  23. JialalI. SinghG. Management of diabetic dyslipidemia: An update.World J. Diabetes201910528029010.4239/wjd.v10.i5.28031139315
    [Google Scholar]
  24. LianX. WangG. ZhouH. ZhengZ. FuY. CaiL. Anticancer properties of fenofibrate: A repurposing use.J. Cancer2018991527153710.7150/jca.2448829760790
    [Google Scholar]
  25. HeřmánkováE. ŽákA. PolákováL. HobzováR. HromádkaR. ŠircJ. Polymeric bile acid sequestrants: Review of design, in vitro binding activities, and hypocholesterolemic effects.Eur. J. Med. Chem.201814430031710.1016/j.ejmech.2017.12.01529275230
    [Google Scholar]
  26. IslamM.S. SharifA. KwanN. TamK.C. Bile acid sequestrants for hypercholesterolemia treatment using sustainable biopolymers: Recent advances and future perspectives.Mol. Pharm.20221951248127210.1021/acs.molpharmaceut.2c0000735333534
    [Google Scholar]
  27. Lent-SchochetD. JialalI. Antilipemic agent bile acid sequestrants.StatPearlsStatPearls PublishingTreasure Island (FL201931751096
    [Google Scholar]
  28. GasperiV. SibilanoM. SaviniI. CataniM. Niacin in the central nervous system: An update of biological aspects and clinical applications.Int. J. Mol. Sci.201920497499910.3390/ijms2004097430813414
    [Google Scholar]
  29. ŽákA. VeckaM. PerlíkF. HromádkaR. StaňkováB. TvrzickáE. ŽákA. Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place?Med. Sci. Monit.2015212156216210.12659/MSM.89361926210594
    [Google Scholar]
  30. NutescuE.A. ShapiroN.L. Ezetimibe: A selective cholesterol absorption inhibitor.Pharmacotherapy200323111463147410.1592/phco.23.14.1463.3194214620392
    [Google Scholar]
  31. AwadK. MikhailidisD.P. KatsikiN. MuntnerP. BanachM. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group Effect of ezetimibe monotherapy on plasma lipoprotein(a) concentrations in patients with primary hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials.Drugs201878445346210.1007/s40265‑018‑0870‑129396832
    [Google Scholar]
  32. TaheriH. FilionK.B. WindleS.B. ReynierP. EisenbergM.J. Cholesteryl ester transfer protein inhibitors and cardiovascular outcomes: A systematic review and meta-analysis of randomized controlled trials.Cardiology2020145423625010.1159/00050536532172237
    [Google Scholar]
  33. ChiesaS.T. CharakidaM. High-density lipoprotein function and dysfunction in health and disease.Cardiovasc. Drugs Ther.201933220721910.1007/s10557‑018‑06846‑w30675710
    [Google Scholar]
  34. ZhangM. LeiD. PengB. YangM. ZhangL. CharlesM.A. RyeK.A. KraussR.M. JohnsD.G. RenG. Assessing the mechanisms of cholesteryl ester transfer protein inhibitors.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20171862121606161710.1016/j.bbalip.2017.09.00428911944
    [Google Scholar]
  35. RaderD.J. deGomaE.M. Future of cholesteryl ester transfer protein inhibitors.Annu. Rev. Med.201465138540310.1146/annurev‑med‑050311‑16330524422575
    [Google Scholar]
  36. NichollsS.J. BubbK. The mystery of evacetrapib - why are CETP inhibitors failing?Expert Rev. Cardiovasc. Ther.202018312713010.1080/14779072.2020.174563332200670
    [Google Scholar]
  37. BlackD.M. BentleyD. ChapelS. LeeJ. BriggsE. HeinonenT. Clinical pharmacokinetics and pharmacodynamics of dalcetrapib.Clin. Pharmacokinet.201857111359136710.1007/s40262‑018‑0656‑329730761
    [Google Scholar]
  38. LincoffA.M. NichollsS.J. RiesmeyerJ.S. BarterP.J. BrewerH.B. FoxK.A.A. GibsonC.M. GrangerC. MenonV. MontalescotG. RaderD. TallA.R. McErleanE. WolskiK. RuotoloG. VangerowB. WeerakkodyG. GoodmanS.G. CondeD. McGuireD.K. NicolauJ.C. Leiva-PonsJ.L. PesantY. LiW. KandathD. KouzS. TahirkheliN. MasonD. NissenS.E. ACCELERATE Investigators Evacetrapib and cardiovascular outcomes in high-risk vascular disease.N. Engl. J. Med.2017376201933194210.1056/NEJMoa160958128514624
    [Google Scholar]
  39. JohnsD.G. LeVociL. KrsmanovicM. LuM. HartmannG. XuS. WangS.P. ChenY. BatemanT. BlausteinR.O. Characterization of anacetrapib distribution into the lipid droplet of adipose tissue in mice and human cultured adipocytes.Drug Metab. Dispos.201947322723310.1124/dmd.118.08452530567880
    [Google Scholar]
  40. KhalafR.A. ShaiahH.A. SabbahD. Trifluoromethylated aryl sulfonamides as novel CETP inhibitors: Synthesis, induced fit docking, pharmacophore mapping and subsequent in vitro validation.Med. Chem.202319439340410.2174/157340641866622090816401436093822
    [Google Scholar]
  41. KhalafR.A. ShallufA. HabashM. Fluorinated diaryl sulfonamides: Molecular modeling, synthesis, and in vitro validation as new CETP inhibitors.Curr. Computeraided Drug Des.202420698799710.2174/0115734099268407230927113905
    [Google Scholar]
  42. KhalafR.A. Asa’adM. HabashM. Thiomethylphenyl benzenesulfonamides as potential cholesteryl ester transfer protein inhibitors: Synthesis, molecular modeling and biological evaluation.Curr. Org. Chem.202226880781510.2174/1385272826666220601150913
    [Google Scholar]
  43. Abu KhalafR. Abu SheikhaG. BustanjiY. TahaM.O. Discovery of new cholesteryl ester transfer protein inhibitors via ligand-based pharmacophore modeling and QSAR analysis followed by synthetic exploration.Eur. J. Med. Chem.20104541598161710.1016/j.ejmech.2009.12.07020116902
    [Google Scholar]
  44. RampoguS. LeeK.W. Pharmacophore modelling-based drug repurposing approaches for SARS-CoV-2 therapeutics.Front Chem.2021963636210.3389/fchem.2021.63636234041221
    [Google Scholar]
  45. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals202215564610.3390/ph1505064635631472
    [Google Scholar]
  46. Al-MustafaA. Al-ZereiniW. AshramM. Al-Sha’erM.A. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study.Med. Chem. Res.202332223925310.1007/s00044‑022‑02999‑4
    [Google Scholar]
  47. AbdullahA.H. AlararehA.K. Al-Sha’erM.A. HabashnehA.Y. AwwadiF.F. BardaweelS.K. Docking, synthesis, and anticancer assessment of novel quinoline-amidrazone hybrids.Pharmacia20247111210.3897/pharmacia.71.e115330
    [Google Scholar]
  48. TahaM.O. BustanjiY. Al-GhusseinM.A.S. MohammadM. ZalloumH. Al-MasriI.M. AtallahN. Pharmacophore modeling, quantitative structure-activity relationship analysis, and in silico screening reveal potent glycogen synthase kinase-3beta inhibitory activities for cimetidine, hydroxychloroquine, and gemifloxacin.J. Med. Chem.20085172062207710.1021/jm700976518324764
    [Google Scholar]
  49. YangS.-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances.Drug Discov Today.20101511-1244445010.1016/j.drudis.2010.03.013
    [Google Scholar]
  50. van DrieJ. Pharmacophore discovery--lessons learned.Curr. Pharm. Des.20039201649166410.2174/138161203345456812871063
    [Google Scholar]
  51. LiH. SutterJ. HoffmannR. Pharmacophore Perception, DeVelopment, and Use in Drug Design. Gu¨nerO.F. La Jolla, CAInternational University Line2000173189
    [Google Scholar]
  52. SutterJ. Gu¨nerO. HoffmannR. LiH. WaldmanM. Pharmacophore Perception, DeVelopment, and Use in Drug Design. Gu¨nerO.F. La Jolla, CAInternational University Line2000501511
    [Google Scholar]
  53. KurogiY. GünerO. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst.Curr. Med. Chem.2001891035105510.2174/092986701337248111472240
    [Google Scholar]
  54. BersukerI.B. Bahc¸eciS. BoggsJ.E. Pharmacophore Perception, DeVelopment, and Use in Drug Design. Gu¨nerO.F. La Jolla, CAInternational University Line2000457473
    [Google Scholar]
  55. Berman HM. Westbrook J. Feng Z. GillilandG. Bhat TN. Weissig H. Shindyalov IN. Bourne PE. The protein data bank.Nucleic Acids Res.20002823524210.1093/nar/28.1.23510592235
    [Google Scholar]
  56. RaoS.N. HeadM.S. KulkarniA. LaLondeJ.M. Validation studies of the site-directed docking program LibDock.J. Chem. Inf. Model.20074762159217110.1021/ci600429917985863
    [Google Scholar]
  57. (a) Al-Sha’erM.A. BasheerH.A. TahaM.O. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores.Mol. Divers.202327144346210.1007/s11030‑022‑10434‑435507210
    [Google Scholar]
  58. (bAlvascience, alvaDesc (software for molecular descriptors calculation) version 1.0.18, 2020https://www.alvascience.com
  59. (aChem-bioinformatics software for the next generation of scientists.Available from: https://chemaxon.com
    [Google Scholar]
  60. (bLipinski C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol.,200414337341
    [Google Scholar]
  61. (a HajjoR. SetolaV. RothB.L. TropshaA. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers.J. Med. Chem.201255125704571910.1021/jm201165722537153
    [Google Scholar]
  62. (bBenet, L. Z.; Hosey, C. M.; Ursu, O.; Oprea, T. I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev.,20161018998
  63. (aDRAGON 7.0.Avaialable from: https://chm.kode-solutions.net/products_dragon.php (accessed on 1 August 2020).
    [Google Scholar]
  64. (bWalters, W. P.; Murcko, M. A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev.,2002543255271
    [Google Scholar]
  65. (a DohertyS. KnightJ.G. BackhouseT. SummersR.J. AboodE. SimpsonW. PagetW. BourneR.A. ChamberlainT.W. StonesR. LovelockK.R.J. SeymourJ.M. IsaacsM.A. HardacreC. DalyH. ReesN.H. Highly selective and solvent-dependent reduction of nitrobenzene to N-phenylhydroxylamine, azoxybenzene, and aniline catalyzed by phosphino-modified polymer immobilized ionic liquid-stabilized AuNPs.ACS Catal.2019964777479110.1021/acscatal.9b00347
    [Google Scholar]
  66. (bChen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H. Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. J. Comb. Chem.,200573398406
    [Google Scholar]
  67. (a Abu KhalafR. Abu SheikhaG. Al-Sha’erM. AlbadawiG. TahaM. Design, synthesis, and biological evaluation of sulfonic acid ester and benzenesulfonamide derivatives as potential CETP inhibitors.Med. Chem. Res.201221113669368010.1007/s00044‑011‑9917‑5
    [Google Scholar]
  68. (bZheng, S.; Luo, X.; Chen, G.; Zhu, W.; Shen, J.; Chen, K. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model.,2005454856862
    [Google Scholar]
  69. (a Gregori-PuigjanéE. MestresJ. SHED: Shannon entropy descriptors from topological feature distributions.J. Chem. Inf. Model.20064641615162210.1021/ci060050916859293
    [Google Scholar]
  70. (bRishton, G. M. Nonleadlikeness and leadlikeness in biochemi cal screening. Drug Discov. Today,2003828696
    [Google Scholar]
  71. (a GuhaR. VelegolD. Harnessing shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties.J. Cheminform.20231515410.1186/s13321‑023‑00712‑037211605
    [Google Scholar]
  72. (bVeber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.,2002451226152623
    [Google Scholar]
/content/journals/cad/10.2174/0115734099292078240218095540
Loading
/content/journals/cad/10.2174/0115734099292078240218095540
Loading

Data & Media loading...

Supplements

Supplementary material and the published article are available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test