Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Non-alcoholic Fatty Liver Disease (NAFLD) has become a significant health and economic burden globally. Yinchenhao decoction (YCHD) is a traditional Chinese medicine formula that has been validated to exert therapeutic effects on NAFLD.

Objective

The current study aimed to explore the pharmacological mechanisms of YCHD on NAFLD and further identify the potential active compounds acting on the main targets.

Methods

Compounds in YCHD were screened and collected from TCMSP and published studies, and their corresponding targets were obtained from the Swisstargetprediction and SEA databases. NAFLD-related targets were searched in the GeneCards and DisGeNet databases. The “compound-intersection target” network was constructed to recognize the key compounds. Moreover, a PPI network was constructed to identify potential targets. GO and KEGG analyses were performed to enrich the functional information of the intersection targets. Then, molecular docking was used to identify the most promising compounds and targets. Finally, molecular dynamics (MD) simulations were performed to verify the binding affinity of the most potential compounds with the key targets.

Results

A total of 53 compounds and 556 corresponding drug targets were collected. Moreover, 2684 NAFLD-related targets were obtained, and 201 intersection targets were identified. Biological processes, including the apoptotic process, inflammatory response, xenobiotic metabolic process, and regulation of MAP kinase activity, were closely related to the treatment of NAFLD. Metabolic pathways, non-alcoholic fatty liver disease, the MAPK signaling pathway, and the PI3K-Akt signaling pathway were found to be the key pathways. Molecular docking showed that quercetin and isorhamnetin were the potential active compounds, while AKT1, IL1B, and PPARG were the most promising targets. MD simulations further verified that the binding of PPARG-isorhamnetin (-35.96 ± 1.64 kcal/mol) and AKT1-quercetin (-31.47 ± 1.49 kcal/mol) was due to their lowest binding free energy.

Conclusion

This study demonstrated that YCHD exerts therapeutic effects for the treatment of NAFLD through multiple targets and pathways, providing a theoretical basis for further pharmacological research on the potential mechanisms of YCHD in NAFLD.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099305489240702075128
2024-07-11
2025-10-17
Loading full text...

Full text loading...

References

  1. LonardoA. LeoniS. AlswatK.A. FouadY. History of nonalcoholic fatty liver disease.Int. J. Mol. Sci.202020202110.3390/ijms21165888 32824337
    [Google Scholar]
  2. EslamM. NewsomeP.N. SarinS.K. AnsteeQ.M. TargherG. Romero-GomezM. Zelber-SagiS. Wai-Sun WongV. DufourJ.F. SchattenbergJ.M. KawaguchiT. ArreseM. ValentiL. ShihaG. TiribelliC. Yki-JärvinenH. FanJ.G. GrønbækH. YilmazY. Cortez-PintoH. OliveiraC.P. BedossaP. AdamsL.A. ZhengM.H. FouadY. ChanW.K. Mendez-SanchezN. AhnS.H. CasteraL. BugianesiE. RatziuV. GeorgeJ. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement.J. Hepatol.20207320220910.1016/j.jhep.2020.03.039 32278004
    [Google Scholar]
  3. EslamM. SanyalA.J. GeorgeJ. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology20201581999201410.1053/j.gastro.2019.11.312 32044314
    [Google Scholar]
  4. CabreraR. NelsonD.R. Review article: the management of hepatocellular carcinoma.Aliment. Pharmacol. Ther.20103146147610.1111/j.1365‑2036.2009.04200.x 19925500
    [Google Scholar]
  5. ChenW. ZhengR. BaadeP.D. ZhangS. ZengH. BrayF. JemalA. YuX.Q. HeJ. Cancer statistics in China, 2015.CA Cancer J. Clin.20166611513210.3322/caac.21338 26808342
    [Google Scholar]
  6. KulikL. El-SeragH.B. Epidemiology and management of hepatocellular carcinoma.Gastroenterology2019156477491.e47110.1053/j.gastro.2018.08.065 30367835
    [Google Scholar]
  7. LoombaR. FriedmanS.L. ShulmanG.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease.Cell20211842537256410.1016/j.cell.2021.04.015 33989548
    [Google Scholar]
  8. RazaS. RajakS. UpadhyayA. TewariA. Anthony SinhaR. Current treatment paradigms and emerging therapies for NAFLD/NASH.Front. Biosci.20212620623710.2741/4892 33049668
    [Google Scholar]
  9. CobbinaE. AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.Drug Metab. Rev.20174919721110.1080/03602532.2017.1293683 28303724
    [Google Scholar]
  10. AbdelmalekM.F. Nonalcoholic fatty liver disease: Another leap forward.Nat. Rev. Gastroenterol. Hepatol.202118858610.1038/s41575‑020‑00406‑0 33420415
    [Google Scholar]
  11. TargherG. CoreyK.E. ByrneC.D. RodenM. The complex link between NAFLD and type 2 diabetes mellitus mechanisms and treatments.Nat. Rev. Gastroenterol. Hepatol.20211859961210.1038/s41575‑021‑00448‑y 33972770
    [Google Scholar]
  12. ChenM. XieY. GongS. WangY. YuH. ZhouT. HuangF. GuoX. ZhangH. HuangR. HanZ. XingY. LiuQ. TongG. ZhouH. Traditional Chinese medicine in the treatment of nonalcoholic steatohepatitis.Pharmacol. Res.202117210584910.1016/j.phrs.2021.105849 34450307
    [Google Scholar]
  13. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.20182490892210.1038/s41591‑018‑0104‑9 29967350
    [Google Scholar]
  14. ZhouH. MaC. WangC. GongL. ZhangY. LiY. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease.Eur. J. Pharmacol.202189817397610.1016/j.ejphar.2021.173976 33639194
    [Google Scholar]
  15. HanJ.M. KimH.G. ChoiM.K. LeeJ.S. LeeJ.S. WangJ.H. ParkH.J. SonS.W. HwangS.Y. SonC.G. Artemisia capillaris extract protects against bile duct ligation-induced liver fibrosis in rats. Exp. toxicol. pathol. offic. j.Gesellsch. Toxikolog. Patholog.20136583784410.1016/j.etp.2012.12.002 23298556
    [Google Scholar]
  16. CaiF.F. WuR. SongY.N. XiongA.Z. ChenX.L. YangM.D. YangL. HuY. SunM.Y. SuS.B. Yinchenhao decoction alleviates liver fibrosis by regulating bile acid metabolism and TGF-β/Smad/ERK signalling pathway.Sci. Rep.201881536710.1038/s41598‑018‑33669‑4 30337590
    [Google Scholar]
  17. ChenS.D. FanY. XuW.J. Effects of yinchenhao decoction (see text) for non-alcoholic steatohepatitis in rats and study of the mechanism.J. Tradit. Chin. Med.20113122022310.1016/S0254‑6272(11)60045‑9 21977865
    [Google Scholar]
  18. MengY. MengK. ZhaoX. LiD. GaoQ. WuS. CuiY. Protective effects of yinchenhao decoction on cholesterol gallstone in mice fed a lithogenic diet by regulating LXR, CYP7A1, CYP7B1, and HMGCR Pathways. Evid.based. compl. altern. med.,20182018, 8134918
  19. GuoY. LiJ.X. WangY.L. MaoT.Y. ChenC. XieT.H. HanY.F. TanX. HanH.X. Yinchen linggui zhugan decoction ameliorates nonalcoholic fatty liver disease in rats by regulating the Nrf2/ARE signaling pathway. Evid.based. compl. altern. med.,20172017, 6178358
  20. SchwabeR.F. TabasI. PajvaniU.B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis.Gastroenterology202015871913192810.1053/j.gastro.2019.11.311 32044315
    [Google Scholar]
  21. KimU. KimN. ShinH.Y. Modeling non-alcoholic fatty liver disease (NAFLD) using “good-fit” genome-editing tools.Cells2020912257210.3390/cells9122572 33271878
    [Google Scholar]
  22. CramponK. GiorkallosA. DeldossiM. BaudS. SteffenelL.A. Machine-learning methods for ligand-protein molecular docking.Drug Discov. Today20222715116410.1016/j.drudis.2021.09.007 34560276
    [Google Scholar]
  23. Al MahmudR. NajninR.A. PolashA.H. A survey of web-based chemogenomic data resources.Methods Mol. Biol.2018182536210.1007/978‑1‑4939‑8639‑2_1 30334202
    [Google Scholar]
  24. CollierT.A. PiggotT.J. AllisonJ.R. Molecular dynamics simulation of proteins.Methods Mol. Biol.2020207331132710.1007/978‑1‑4939‑9869‑2_17 31612449
    [Google Scholar]
  25. Herrera-NietoP. PérezA. De FabritiisG. Small molecule modulation of intrinsically disordered proteins using molecular dynamics simulations.J. Chem. Inf. Model.2020605003501010.1021/acs.jcim.0c00381 32786705
    [Google Scholar]
  26. KarplusM. McCammonJ.A. Molecular dynamics simulations of biomolecules.Nat. Struct. Biol.2002964665210.1038/nsb0902‑646 12198485
    [Google Scholar]
  27. LiangZ. ChenX. ShiJ. HuH. XueY. UngC.O.L. Efficacy and safety of traditional Chinese medicines for non-alcoholic fatty liver disease: A systematic literature review of randomized controlled trials.Chin. Med.202116910.1186/s13020‑020‑00422‑x 33430929
    [Google Scholar]
  28. LiW.H. HanJ.R. RenP.P. XieY. JiangD.Y. Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology.Comput. Biol. Chem.20219010735810.1016/j.compbiolchem.2020.107358 33243703
    [Google Scholar]
  29. WuW. YangS. LiuP. YinL. GongQ. ZhuW. Systems pharmacology-based strategy to investigate pharmacological mechanisms of radix puerariae for treatment of hypertension.Front. Pharmacol.20201134510.3389/fphar.2020.00345 32265716
    [Google Scholar]
  30. YouJ.S. LiC.Y. ChenW. WuX.L. HuangL.J. LiR.K. GaoF. ZhangM.Y. LiuH.L. QuW.L. A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao.BioData Min.202013210.1186/s13040‑020‑00212‑z 32351618
    [Google Scholar]
  31. YangR. LiuL. JiangD. LiuL. YangH. XuH. QinM. WangP. GuJ. XingY. Identification of potential TMPRSS2 inhibitors for COVID-19 treatment in chinese medicine by computational approaches and surface plasmon resonance technology.J. Chem. Inf. Model.2023633005301710.1021/acs.jcim.2c01643 37155923
    [Google Scholar]
  32. AfzalM. QaisF.A. AbduhN.A.Y. ChristyM. AyubR. AlarifiA. Identification of bioactive compounds of Zanthoxylum armatum as potential inhibitor of pyruvate kinase M2 (PKM2): Computational and virtual screening approaches.Heliyon202410e2736110.1016/j.heliyon.2024.e27361 38495183
    [Google Scholar]
  33. WangX. SunW. SunH. LvH. WuZ. WangP. LiuL. CaoH. Analysis of the constituents in the rat plasma after oral administration of Yin Chen Hao Tang by UPLC/Q-TOF-MS/MS.J. Pharm. Biomed. Anal.20084647749010.1016/j.jpba.2007.11.014 18164893
    [Google Scholar]
  34. YiY. ZhangY. DingY. LuL. ZhangT. ZhaoY. XuX. ZhangY. Simultaneous quantitation of 14 active components in Yinchenhao decoction by using ultra high performance liquid chromatography with diode array detection: Method development and ingredient analysis of different commonly prepared samples.J. Sep. Sci.2016394147415710.1002/jssc.201600284 27673697
    [Google Scholar]
  35. ZhangA. SunH. QiuS. WangX. Advancing drug discovery and development from active constituents of yinchenhao tang, a famous traditional chinese medicine formula. Evid.based. compl.altern. medi.20132013257909
    [Google Scholar]
  36. ZhaoX. AmevorF.K. CuiZ. WanY. XueX. PengC. LiY. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed. pharmacoth.20231601143110.1016/j.biopha.2023.114311 36764133
    [Google Scholar]
  37. YounossiZ.M. GolabiP. PaikJ.M. HenryA. Van DongenC. HenryL. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review.Hepatology20237741335134710.1097/HEP.0000000000000004 36626630
    [Google Scholar]
  38. HenryL. PaikJ. YounossiZ.M. Review article: the epidemiologic burden of non-alcoholic fatty liver disease across the world.Aliment. Pharmacol. Ther.20225694295610.1111/apt.17158 35880713
    [Google Scholar]
  39. KubotaJ. FujinoT. SugimotoC. AbeT. Long term complications caused by injected silicone gel and paraffin oil.Keio J. Med.19843312713610.2302/kjm.33.127 6513252
    [Google Scholar]
  40. MantovaniA. PetraccaG. BeatriceG. CsermelyA. LonardoA. SchattenbergJ.M. TilgH. ByrneC.D. TargherG. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: An updated meta-analysis.Gut20227115616210.1136/gutjnl‑2020‑323082 33303564
    [Google Scholar]
  41. MantovaniA. PetraccaG. BeatriceG. CsermelyA. TilgH. ByrneC.D. TargherG. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies.Gut20227177878810.1136/gutjnl‑2021‑324191 33685968
    [Google Scholar]
  42. ZhangP. DongX. ZhangW. WangS. ChenC. TangJ. YouY. HuS. ZhangS. WangC. WenW. ZhouM. TanT. QiG. LiL. WangM. Metabolic-associated fatty liver disease and the risk of cardiovascular disease.Clin. Res. Hepatol. Gastroenterol.20234710206310.1016/j.clinre.2022.102063 36494073
    [Google Scholar]
  43. DongH. LuF.E. ZhaoL. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease.Chin. J. Integr. Med.20121815216010.1007/s11655‑012‑0993‑2 22311412
    [Google Scholar]
  44. LeiS. ZhaoS. HuangX. FengY. LiZ. ChenL. HuangP. GuanH. ZhangH. WuQ. ChenB. Chaihu Shugan powder alleviates liver inflammation and hepatic steatosis in NAFLD mice: A network pharmacology study and in vivo experimental validation.Front. Pharmacol.20221396762310.3389/fphar.2022.967623 36172180
    [Google Scholar]
  45. ZhangY. GuM. CaiW. YuL. FengL. ZhangL. ZangQ. WangY. WangD. ChenH. TongQ. JiG. HuangC. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency.Sci. Rep.201661928810.1038/srep19288 26775807
    [Google Scholar]
  46. GanboldM. OwadaY. OzawaY. ShimamotoY. FerdousiF. TominagaK. ZhengY.W. OhkohchiN. IsodaH. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis.Sci. Rep.201991621010.1038/s41598‑019‑52736‑y 31700054
    [Google Scholar]
  47. JiangJ.J. ZhangG.F. ZhengJ.Y. SunJ.H. DingS.B. Targeting mitochondrial ROS-mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity.Front. Pharmacol.20221387655010.3389/fphar.2022.876550 35496312
    [Google Scholar]
  48. Saleh Al-MaamariJ.N. RahmadiM. PanggonoS.M. PrameswariD.A. PratiwiE.D. ArdiantoC. BalanS.S. SupraptiB. The effects of quercetin on the expression of SREBP-1c mRNA in high-fat diet-induced NAFLD in mice.J. Basic Clin. Physiol. Pharmacol.20213263764410.1515/jbcpp‑2020‑0423 34214346
    [Google Scholar]
  49. MuH.N. ZhouQ. YangR.Y. TangW.Q. LiH.X. WangS.M. LiJ. ChenW.X. DongJ. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice.Food Res. Int.202114311024010.1016/j.foodres.2021.110240 33992352
    [Google Scholar]
  50. ZhaoL. YangL. AhmadK. Kaempferol ameliorates palmitate-induced lipid accumulation in HepG2 cells through activation of the Nrf2 signaling pathway.Hum. Exp. Toxicol.202342960327122114678010.1177/09603271221146780 36607234
    [Google Scholar]
  51. RakibA. AhmedS. IslamM.A. HayeA. UddinS.M.N. UddinM.M.N. HossainM.K. PaulA. EmranT.B. Antipyretic and hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in silico approaches.Food Sci. Nutr.2020854755610.1002/fsn3.1339 31993178
    [Google Scholar]
  52. CheD.N. ShinJ.Y. KangH.J. ChoB.O. ParkJ.H. WangF. HaoS. SimJ.S. SimD.J. JangS.I. Ameliorative effects of Cirsium japonicum extract and main component cirsimaritin in mice model of high-fat diet-induced metabolic dysfunction-associated fatty liver disease.Food Sci. Nutr.202196060606810.1002/fsn3.2548 34760237
    [Google Scholar]
  53. IvanL. UyyE. SuicaV.I. BoteanuR.M. Cerveanu-HogasA. HansenR. AntoheF. Hepatic alarmins and mitochondrial dysfunction under residual hyperlipidemic stress lead to irreversible NAFLD.J. Clin. Transl. Hepatol.202311284294 36643050
    [Google Scholar]
  54. ClareK. DillonJ.F. BrennanP.N. Reactive oxygen species and oxidative stress in the pathogenesis of MAFLD.J. Clin. Transl. Hepatol.20221093994610.14218/JCTH.2022.00067 36304513
    [Google Scholar]
  55. YangQ. XuY. FengG. HuC. ZhangY. ChengS. WangY. GongX. p38 MAPK signal pathway involved in anti-inflammatory effect of Chaihu-Shugan-San and Shen-ling-bai-zhu-San on hepatocyte in non-alcoholic steatohepatitis rats.AJTCAM20141121322110.4314/ajtcam.v11i1.34 24653580
    [Google Scholar]
  56. ZhangZ. LiM. ZhangX. ZhengN. ZhaoS. WangJ. A novel urease inhibitor of ruminal microbiota screened through molecular docking.Int. J. Mol. Sci.202020202110.3390/ijms21176006 32825454
    [Google Scholar]
  57. ShenX. GuoH. XuJ. WangJ. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease.J. Cell. Physiol.2019234181691817910.1002/jcp.28450 30908654
    [Google Scholar]
  58. LiuY. FanD. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer.Biochem. Pharmacol.201916828530410.1016/j.bcp.2019.07.008 31301277
    [Google Scholar]
  59. WangK. ChenB. YinT. ZhanY. LuY. ZhangY. ChenJ. WuW. ZhouS. MaoW. TanY. DuB. LiuX. HoH.I. XiaoJ. N-methylparoxetine blocked autophagic flux and induced apoptosis by activating ROS-MAPK pathway in non-small cell lung cancer cells.Int. J. Mol. Sci.201920192010.3390/ijms20143415 31336784
    [Google Scholar]
  60. LiaoX. SongL. ZhangL. WangH. TongQ. XuJ. YangG. YangS. ZhengH. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway.Mol. Cell. Endocrinol.201847016016710.1016/j.mce.2017.10.010 29056532
    [Google Scholar]
  61. FanY. HeZ. WangW. LiJ. HuA. LiL. YanL. LiZ. YinQ. Tangganjian decoction ameliorates type 2 diabetes mellitus and nonalcoholic fatty liver disease in rats by activating the IRS/PI3K/AKT signaling pathway. Biomed. pharmacoth.,201810673373710.1016/j.biopha.2018.06.08929990865
    [Google Scholar]
  62. XuZ. WuF.W. NiuX. LuX.P. LiY.R. ZhangS.T. OuJ.Z. WangX.M. Integrated strategy of RNA-sequencing and network pharmacology for exploring the protective mechanism of Shen-Shi-Jiang-Zhuo formula in rat with non-alcoholic fatty liver disease.Pharm. Biol.2022601819183810.1080/13880209.2022.2106250 36124995
    [Google Scholar]
  63. LiW. LiR. YanS. ZhaoZ. ShanY. QiZ. LuJ. Effect of APOE ε4 genotype on amyloid-β, glucose metabolism, and gray matter volume in cognitively normal individuals and amnestic mild cognitive impairment.Eur. J. Neurol.20233058759610.1111/ene.15656 36448771
    [Google Scholar]
  64. PirolaC.J. SookoianS. COVID-19 and non-alcoholic fatty liver disease: Biological insights from multi-omics data.Liver Int.202343358058710.1111/liv.15509 36593576
    [Google Scholar]
  65. LeeS.M. MuratallaJ. KarimiS. Diaz-RuizA. FrutosM.D. GuzmanG. Ramos-MolinaB. Cordoba-ChaconJ. Hepatocyte PPARγ contributes to the progression of non-alcoholic steatohepatitis in male and female obese mice, Cellular and molecular life sciences.Cell. Mol. Life Sci.2023803910.1007/s00018‑022‑04629‑z 36629912
    [Google Scholar]
  66. NiX.X. JiP.X. ChenY.X. LiX.Y. ShengL. LianM. GuoC.J. HuaJ. Regulation of the macrophage-hepatic stellate cell interaction by targeting macrophage peroxisome proliferator-activated receptor gamma to prevent non-alcoholic steatohepatitis progression in mice.Liver Int.202242122696271210.1111/liv.15441 36165186
    [Google Scholar]
  67. DinizT.A. de LimaE.A. Junior; Teixeira, A.A.; Biondo, L.A.; da Rocha, L.A.F.; Valadão, I.C.; Silveira, L.S.; Cabral-Santos, C.; de Souza, C.O.; Rosa Neto, J.C. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice.Life Sci.202126611886810.1016/j.lfs.2020.118868 33310034
    [Google Scholar]
  68. AbolfazliP. AghajanzadehT. GhaderinasrabadM. Apue NchamaC.N. MokhlesiA. TalkhabiM. Bioinformatics analysis reveals molecular connections between non-alcoholic fatty liver disease (NAFLD) and COVID-19.J. Cell Commun. Signal.20221660961910.1007/s12079‑022‑00678‑y 35525888
    [Google Scholar]
  69. GaoR. ZhangX. ZhouZ. SunJ. TangX. LiJ. ZhouX. ShenT. Pharmacological mechanism of ganlu powder in the treatment of NASH based on network pharmacology and molecular docking.Dis. Markers20222022725145010.1155/2022/7251450 35811658
    [Google Scholar]
  70. DuanY. PanX. LuoJ. XiaoX. LiJ. BestmanP.L. LuoM. Association of inflammatory cytokines with non-alcoholic fatty liver disease.Front. Immunol.20221388029810.3389/fimmu.2022.880298 35603224
    [Google Scholar]
  71. NegrinK.A. Roth FlachR.J. DiStefanoM.T. MatevossianA. FriedlineR.H. JungD. KimJ.K. CzechM.P. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis.PLoS One20149, e10726510.1371/journal.pone.0107265 25216251
    [Google Scholar]
/content/journals/cad/10.2174/0115734099305489240702075128
Loading
/content/journals/cad/10.2174/0115734099305489240702075128
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test