Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The coronavirus E ion channel has previously been studied as a potential target for antiviral therapy, with several compounds found to bind to the channel. Since, these compounds have low activity, searching for effective E ion channel inhibitors of great importance.

Objective

This study aimed to develop a computational approach for designing ligands for the coronaviral E ion channel and identify potential inhibitors based on this approach.

Methods

The structure of the E-ion channel was refined using molecular dynamics, and the pore responsible for binding cage compounds was selected as the inhibitor-binding site. Potential inhibitor structures were identified using molecular docking, and their binding was confirmed using molecular dynamics simulations.

Results

A number of potential SARS E ion channel inhibitors have been identified, and the binding modes and possible mechanisms of action of these inhibitors have been clarified.

Conclusion

This study presents a computational approach that can be used to design ligands for E ion channels and identify potential inhibitors, providing valuable insights into the development of new antiviral therapies. The behavior of the E protein pentamer of SARS-CoV-2 in its native environment was investigated using Molecular Dynamics (MD), resulting in an equilibrated structure that could be used to develop new inhibitors through molecular docking. Simulation of the MD of E-channel complexes with amantadine analogues allowed for the identification of the main types of ligand-protein interactions that are responsible for the good binding of ligands within the channel's inner chamber.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099247899240326073802
2025-04-05
2025-12-05
Loading full text...

Full text loading...

References

  1. Worldometer's Covid-19 data. https://www.worldometers.info/coronavirus/2021
  2. BianL. GaoQ. GaoF. WangQ. HeQ. WuX. MaoQ. XuM. LiangZ. Impact of the Delta variant on vaccine efficacy and response strategies.Expert Rev. Vacc.202120101201120910.1080/14760584.2021.1976153
    [Google Scholar]
  3. VenkatesanP. Repurposing drugs for treatment of COVID-19.Lancet Respir. Med.202197e6310.1016/S2213‑2600(21)00270‑8 34090608
    [Google Scholar]
  4. JangW.D. JeonS. KimS. LeeS.Y. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay.Proc. Natl. Acad. Sci. USA202111830e202430211810.1073/pnas.2024302118 34234012
    [Google Scholar]
  5. SinghT.U. ParidaS. LingarajuM.C. KesavanM. KumarD. SinghR.K. Drug repurposing approach to fight COVID-19.Pharmacol. Rep.20207261479150810.1007/s43440‑020‑00155‑6 32889701
    [Google Scholar]
  6. MartinezM.A. Lack of effectiveness of repurposed drugs for COVID-19 treatment.Front. Immunol.20211263537110.3389/fimmu.2021.635371 33777024
    [Google Scholar]
  7. PizzornoA. PadeyB. DuboisJ. JulienT. TraversierA. DulièreV. BrunP. LinaB. CalatravaR.M. TerrierO. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2.Antiviral Res.202018110487810.1016/j.antiviral.2020.104878 32679055
    [Google Scholar]
  8. ZhouY. WangF. TangJ. NussinovR. ChengF. Artificial intelligence in COVID-19 drug repurposing.Lancet Digit. Health2020212e667e67610.1016/S2589‑7500(20)30192‑8 32984792
    [Google Scholar]
  9. GordonD.E. JangG.M. BouhaddouM. XuJ. ObernierK. WhiteK.M. O’MearaM.J. RezeljV.V. GuoJ.Z. SwaneyD.L. TumminoT.A. HüttenhainR. KaakeR.M. RichardsA.L. TutuncuogluB. FoussardH. BatraJ. HaasK. ModakM. KimM. HaasP. PolaccoB.J. BrabergH. FabiusJ.M. EckhardtM. SoucherayM. BennettM.J. CakirM. McGregorM.J. LiQ. MeyerB. RoeschF. ValletT. Mac KainA. MiorinL. MorenoE. NaingZ.Z.C. ZhouY. PengS. ShiY. ZhangZ. ShenW. KirbyI.T. MelnykJ.E. ChorbaJ.S. LouK. DaiS.A. HernandezB.I. MemonD. ArmentaH.C. LyuJ. MathyC.J.P. PericaT. PillaK.B. GanesanS.J. SaltzbergD.J. RakeshR. LiuX. RosenthalS.B. CalvielloL. VenkataramananS. LugoL.J. LinY. HuangX.P. LiuY. WankowiczS.A. BohnM. SafariM. UgurF.S. KohC. SavarN.S. TranQ.D. ShengjulerD. FletcherS.J. O’NealM.C. CaiY. ChangJ.C.J. BroadhurstD.J. KlippstenS. SharpP.P. WenzellN.A. OzturkK.D. WangH.Y. TrenkerR. YoungJ.M. CaveroD.A. HiattJ. RothT.L. RathoreU. SubramanianA. NoackJ. HubertM. StroudR.M. FrankelA.D. RosenbergO.S. VerbaK.A. AgardD.A. OttM. EmermanM. JuraN. ZastrowV.M. VerdinE. AshworthA. SchwartzO. d’EnfertC. MukherjeeS. JacobsonM. MalikH.S. FujimoriD.G. IdekerT. CraikC.S. FloorS.N. FraserJ.S. GrossJ.D. SaliA. RothB.L. RuggeroD. TauntonJ. KortemmeT. BeltraoP. VignuzziM. SastreG.A. ShokatK.M. ShoichetB.K. KroganN.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature2020583781645946810.1038/s41586‑020‑2286‑9 32353859
    [Google Scholar]
  10. SaxenaA. Drug targets for COVID-19 therapeutics: Ongoing global efforts.J. Biosci.20204518710.1007/s12038‑020‑00067‑w 32661214
    [Google Scholar]
  11. PillaiyarT. MeenakshisundaramS. ManickamM. Recent discovery and development of inhibitors targeting coronaviruses.Drug Discov. Today202025466868810.1016/j.drudis.2020.01.015 32006468
    [Google Scholar]
  12. TomarP.P.S. KrugliakM. ArkinI.T. Identification of SARS-CoV-2 E channel blockers from a repurposed drug library.Pharma.202114760410.3390/ph14070604 34201587
    [Google Scholar]
  13. WongN.A. SaierM.H.Jr The SARS-coronavirus infection cycle: A survey of viral membrane proteins, their functional interactions and pathogenesis.Int. J. Mol. Sci.2021223130810.3390/ijms22031308 33525632
    [Google Scholar]
  14. JohnS.S.E. TomarS. StaufferS.R. MesecarA.D. Targeting zoonotic viruses: Structure-based inhibition of the 3C-like protease from bat coronavirus HKU4--The likely reservoir host to the human coronavirus that causes middle east respiratory syndrome (MERS).Bioorg. Med. Chem.201523176036604810.1016/j.bmc.2015.06.039 26190463
    [Google Scholar]
  15. JacobsJ. TokarsG.V. ZhouY. TurlingtonM. SaldanhaS.A. ChaseP. EgglerA. DawsonE.S. SantosB.Y.M. TomarS. MielechA.M. BakerS.C. LindsleyC.W. HodderP. MesecarA. StaufferS.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease.J. Med. Chem.201356253454610.1021/jm301580n 23231439
    [Google Scholar]
  16. KonnoH. WakabayashiM. TakanumaD. SaitoY. AkajiK. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.Bioorg. Med. Chem.20162461241125410.1016/j.bmc.2016.01.052 26879854
    [Google Scholar]
  17. KonnoH. OnumaT. NitanaiI. WakabayashiM. YanoS. TeruyaK. AkajiK. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor.Bioorg. Med. Chem. Lett.201727122746275110.1016/j.bmcl.2017.04.056 28454669
    [Google Scholar]
  18. LiuC. BolandS. ScholleM.D. BardiotD. MarchandA. ChaltinP. BlattL.M. BeigelmanL. SymonsJ.A. RaboissonP. LevinG.Z.A. VandyckK. DevalJ. Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development.Antiviral Res.202118710502010.1016/j.antiviral.2021.105020 33515606
    [Google Scholar]
  19. HungH.C. KeY.Y. HuangS.Y. HuangP.N. KungY.A. ChangT.Y. YenK.J. PengT.T. ChangS.E. HuangC.T. TsaiY.R. WuS.H. LeeS.J. LinJ.H. LiuB.S. SungW.C. ShihS.R. ChenC.T. HsuJ.T.A. Discovery of M protease inhibitors encoded by SARS-CoV-2.Antimicrob. Agents Chemother.2020649e00872e2010.1128/AAC.00872‑20 32669265
    [Google Scholar]
  20. FuL. YeF. FengY. YuF. WangQ. WuY. ZhaoC. SunH. HuangB. NiuP. SongH. ShiY. LiX. TanW. QiJ. GaoG.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.Nat. Commun.2020111441710.1038/s41467‑020‑18233‑x 32887884
    [Google Scholar]
  21. JohnS.S.E. MesecarA.D. Broad-spectrum non-covalent coronavirus protease inhibitors.US9975885B2.
    [Google Scholar]
  22. KankanamalageG.A.C. KimY. DamalankaV.C. RathnayakeA.D. FehrA.R. MehzabeenN. BattaileK.P. LovellS. LushingtonG.H. PerlmanS. ChangK.O. GroutasW.C. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element.Eur. J. Med. Chem.201815033434610.1016/j.ejmech.2018.03.004 29544147
    [Google Scholar]
  23. YangS. ChenS.J. HsuM.F. WuJ.D. TsengC.T.K. LiuY.F. ChenH.C. KuoC.W. WuC.S. ChangL.W. ChenW.C. LiaoS.Y. ChangT.Y. HungH.H. ShrH.L. LiuC.Y. HuangY.A. ChangL.Y. HsuJ.C. PetersC.J. WangA.H.J. HsuM.C. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.J. Med. Chem.200649164971498010.1021/jm0603926 16884309
    [Google Scholar]
  24. SaccoM.D. MaC. LagariasP. GaoA. TownsendJ.A. MengX. DubeP. ZhangX. HuY. KitamuraN. HurstB. TarbetB. MartyM.T. KolocourisA. XiangY. ChenY. WangJ. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M pro and cathepsin L.Sci. Adv.2020650eabe075110.1126/sciadv.abe0751 33158912
    [Google Scholar]
  25. ZhangL. LinD. SunX. CurthU. DrostenC. SauerheringL. BeckerS. RoxK. HilgenfeldR. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb3405 32198291
    [Google Scholar]
  26. ZhangL. LinD. KusovY. NianY. MaQ. WangJ. BrunnV.A. LeyssenP. LankoK. NeytsJ. de WildeA. SnijderE.J. LiuH. HilgenfeldR. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment.J. Med. Chem.20206394562457810.1021/acs.jmedchem.9b01828 32045235
    [Google Scholar]
  27. WangJ. LiangB. ChenY. ChanF.W.J. YuanS. YeH. NieL. ZhouJ. WuY. WuM. HuangL.S. AnJ. WarshelA. YuenK.Y. CiechanoverA. HuangZ. XuY. A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities.Eur. J. Med. Chem.202121511326710.1016/j.ejmech.2021.113267 33639344
    [Google Scholar]
  28. GhahremanpourM.M. RivesT.J. DeshmukhM. IppolitoJ.A. ZhangC.H. de VacaC.I. LiosiM.E. AndersonK.S. JorgensenW.L. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2.ACS Med. Chem. Lett.202011122526253310.1021/acsmedchemlett.0c00521 33324471
    [Google Scholar]
  29. BotyanszkiJ. CatalanoJ.G. ChongP.Y. DicksonH. JinQ. LeiversA. MaynardA. LiaoX. MillerJ. ShotwellJ.B. TaiV.W-F. ThaljiR. Inhibitors of cysteine proteases and methods of use thereof.US11124497B12018
    [Google Scholar]
  30. ChoyK.T. WongA.Y.L. KaewpreedeeP. SiaS.F. ChenD. HuiK.P.Y. ChuD.K.W. ChanM.C.W. CheungP.P.H. HuangX. PeirisM. YenH.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro.Antiviral Res.202017810478610.1016/j.antiviral.2020.104786 32251767
    [Google Scholar]
  31. JiangX. SuH. ShangW. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir.Nat. Commun.2023141646310.1038/s41467‑023‑42102‑y
    [Google Scholar]
  32. YuW. ZhaoY. YeH. WuN. LiaoY. ChenN. LiZ. WanN. HaoH. YanH. XiaoY. LaiM. Structure-based design of a dual-targeted covalent inhibitor against papain-like and main proteases of SARS-CoV-2.J. Med. Chem.20226524162521626710.1021/acs.jmedchem.2c00954 36503248
    [Google Scholar]
  33. DaiW. ZhangB. JiangX.M. SuH. LiJ. ZhaoY. XieX. JinZ. PengJ. LiuF. LiC. LiY. BaiF. WangH. ChengX. CenX. HuS. YangX. WangJ. LiuX. XiaoG. JiangH. RaoZ. ZhangL.K. XuY. YangH. LiuH. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease.Science202036864971331133510.1126/science.abb4489 32321856
    [Google Scholar]
  34. FrecerV. MiertusS. Antiviral agents against COVID-19: Structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease.RSC Advan.20201066402444026310.1039/D0RA08304F 35520818
    [Google Scholar]
  35. OtavaT. ŠálaM. LiF. FanfrlíkJ. DevkotaK. PerveenS. ChauI. PakarianP. HobzaP. VedadiM. BouraE. NenckaR. The structure-based design of SARS-CoV-2 nsp14 Methyltransferase ligands yields nanomolar inhibitors.ACS Infect. Dis.2021782214222010.1021/acsinfecdis.1c00131 34152728
    [Google Scholar]
  36. PellyS. LiottaD. Potent sars-cov-2 direct-acting antivirals provide an important complement to covid-19 vaccines.ACS Cent. Sci.20217339639910.1021/acscentsci.1c00258 33786374
    [Google Scholar]
  37. AlamI. KamauA.A. KulmanovM. JaremkoŁ. AroldS.T. PainA. GojoboriT. DuarteC.M. Functional pangenome analysis shows key features of E protein are preserved in SARS and SARS-CoV-2.Front. Cell. Infect. Microbiol.20201040510.3389/fcimb.2020.00405 32850499
    [Google Scholar]
  38. McClenaghanC. HansonA. LeeS.J. NicholsC.G. Coronavirus proteins as ion channels: Current and potential research.Front. Immunol.20201157333910.3389/fimmu.2020.573339 33154751
    [Google Scholar]
  39. SinghA. ArkinI.T. Targeting viral ion channels: A promising strategy to curb SARS-CoV-2.Pharmaceuticals202215439610.3390/ph15040396 35455392
    [Google Scholar]
  40. WangK. XieS. SunB. Viral proteins function as ion channels.Biochim. Biophys. Acta Biomembr.20111808251051510.1016/j.bbamem.2010.05.006
    [Google Scholar]
  41. ShiryaevV.A. KlimochkinY.N. Heterocyclic inhibitors of viroporins in the design of antiviral compounds.Chem. Heterocycl. Compd.202056662663510.1007/s10593‑020‑02712‑6 32836315
    [Google Scholar]
  42. ScottC. GriffinS. Viroporins: Structure, function and potential as antiviral targets.J. Gen. Virol.20159682000202710.1099/vir.0.000201 26023149
    [Google Scholar]
  43. PervushinK. TanE. ParthasarathyK. LinX. JiangF.L. YuD. VararattanavechA. SoongT.W. LiuD.X. TorresJ. Structure and inhibition of the SARS coronavirus envelope protein ion channel.PLoS Pathog.200957e100051110.1371/journal.ppat.1000511 19593379
    [Google Scholar]
  44. BáguenaV.C. TorresN.J.L. AlcarazA. DeDiegoM.L. TorresJ. AguilellaV.M. EnjuanesL. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids.Virology2012432248549410.1016/j.virol.2012.07.005 22832120
    [Google Scholar]
  45. Nieto-TorresJ.L. DeDiegoM.L. BáguenaV.C. GuardeñoJ.J.M. NavaR.J.A. DelgadoF.R. RodriguezC.C. AlcarazA. TorresJ. AguilellaV.M. EnjuanesL. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.PLoS Pathog.2014105e100407710.1371/journal.ppat.1004077 24788150
    [Google Scholar]
  46. GuardeñoJ.J.M. TorresN.J.L. DeDiegoM.L. NavaR.J.A. DelgadoF.R. RodriguezC.C. EnjuanesL. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis.PLoS Pathog.2014108e100432010.1371/journal.ppat.1004320 25122212
    [Google Scholar]
  47. TomarP.P.S. ArkinI.T. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by gliclazide and memantine.Biochem. Biophys. Res. Commun.20205301101410.1016/j.bbrc.2020.05.206
    [Google Scholar]
  48. MandalaV.S. McKayM.J. ShcherbakovA.A. DregniA.J. KolocourisA. HongM. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers.Nat. Struct. Mol. Biol.202027121202120810.1038/s41594‑020‑00536‑8 33177698
    [Google Scholar]
  49. BertelsenT.T.L. JeppesenM.G. TzortziniE. XueK. GillerK. BeckerS. MujezinovicA. BentzenB.H. AndreasL.B. KolocourisA. KledalT.N. RosenkildeM.M. Author correction: Amantadine inhibits known and novel ion channels encoded by SARS-CoV-2 in vitro.Commun. Biol.202141140210.1038/s42003‑021‑02940‑2 34893762
    [Google Scholar]
  50. FinkK. NitscheA. NeumannM. GrossegesseM. EiseleK.H. DanyszW. Amantadine inhibits SARS-CoV-2 in vitro.Viruses202113453910.3390/v13040539 33804989
    [Google Scholar]
  51. SombergN.H. SilvaM.J. JoH. WangJ. DeGradoW.F. HongM. Hexamethylene amiloride binds the SARS‐CoV‐2 envelope protein at the protein–lipid interface.Protein Sci.20233210e475510.1002/pro.4755 37632140
    [Google Scholar]
  52. ZhouY. GammeltoftK.A. GalliA. OffersgaardA. FahnøeU. RamirezS. BukhJ. GottweinJ.M. Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro.Viruses20211310208210.3390/v13102082
    [Google Scholar]
  53. SuryaW. LiY. TorresJ. Structural model of the SARS coronavirus E channel in LMPG micelles.Biochim. Biophys. Acta Biomembr.2018186061309131710.1016/j.bbamem.2018.02.017
    [Google Scholar]
  54. LiY. SuryaW. ClaudineS. TorresJ. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins.J. Biol. Chem.201428918125351254910.1074/jbc.M114.560094 24668816
    [Google Scholar]
  55. LiaoY. YuanQ. TorresJ. TamJ.P. LiuD.X. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein.Virology2006349226427510.1016/j.virol.2006.01.028 16507314
    [Google Scholar]
  56. BoscarinoJ.A. LoganH.L. LacnyJ.J. GallagherT.M. Envelope protein palmitoylations are crucial for murine coronavirus assembly.J. Virol.20088262989299910.1128/JVI.01906‑07 18184706
    [Google Scholar]
  57. LopezL.A. RiffleA.J. PikeS.L. GardnerD. HogueB.G. Importance of conserved cysteine residues in the coronavirus envelope protein.J. Virol.20088263000301010.1128/JVI.01914‑07 18184703
    [Google Scholar]
  58. SunS. KarkiC. AguileraJ. HernandezL.A.E. SunJ. LiL. Computational study on the function of palmitoylation on the envelope protein in SARS-CoV-2.J. Chem. Theory Comput.202117106483649010.1021/acs.jctc.1c00359 34516136
    [Google Scholar]
  59. KlimochkinY. ShiryaevV. PetrovP. RadchenkoE. PalyulinV. ZefirovN. Design of broad-spectrum inhibitors of influenza A virus M2 proton channels: A molecular modeling approach, Curr. Comput.-Aided.Curr. Computeraided Drug Des.201612215416410.2174/1573409912666160505113408 27146707
    [Google Scholar]
  60. ShiryaevV.A. RadchenkoE.V. PalyulinV.A. ZefirovN.S. BormotovN.I. SerovaO.A. ShishkinaL.N. BaimuratovM.R. BormashevaK.M. GruzdY.A. IvlevaE.A. LeonovaM.V. LukashenkoA.V. OsipovD.V. OsyaninV.A. ReznikovA.N. ShadrikovaV.A. SibiryakovaA.E. TkachenkoI.M. KlimochkinY.N. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels.Eur. J. Med. Chem.201815821423510.1016/j.ejmech.2018.08.009 30218908
    [Google Scholar]
  61. ShiryaevV.A. SkomorohovM.Y. LeonovaM.V. BormotovN.I. SerovaO.A. ShishkinaL.N. AgafonovA.P. MaksyutovR.A. KlimochkinY.N. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity.Eur. J. Med. Chem.202122111348510.1016/j.ejmech.2021.113485 33965861
    [Google Scholar]
  62. BIOVIA Dassault Systèmes, Biovia Discovery Studio Visualizer, v20.1.0.19295.San DiegoDassault Systèmes2019
    [Google Scholar]
  63. JoS. KimT. IyerV.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for cHARMM.J. Comput. Chem.200829111859186510.1002/jcc.20945 18351591
    [Google Scholar]
  64. BrooksB.R. BrooksC.L.III MackerellA.D.Jr NilssonL. PetrellaR.J. RouxB. WonY. ArchontisG. BartelsC. BoreschS. CaflischA. CavesL. CuiQ. DinnerA.R. FeigM. FischerS. GaoJ. HodoscekM. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program.J. Comput. Chem.200930101545161410.1002/jcc.21287 19444816
    [Google Scholar]
  65. LeeJ. ChengX. SwailsJ.M. YeomM.S. EastmanP.K. LemkulJ.A. WeiS. BucknerJ. JeongJ.C. QiY. JoS. PandeV.S. CaseD.A. BrooksC.L.III MacKerellA.D.Jr KlaudaJ.B. ImW. CHARMM-GUI input generator for namd, gromacs, amber, openmm, and charmm/openmm simulations using the charmm36 additive force field.J. Chem. Theory Comput.201612140541310.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  66. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  67. PhillipsJ.C. HardyD.J. MaiaJ.D.C. StoneJ.E. RibeiroJ.V. BernardiR.C. BuchR. FiorinG. HéninJ. JiangW. McGreevyR. MeloM.C.R. RadakB.K. SkeelR.D. SingharoyA. WangY. RouxB. AksimentievA. SchultenL.Z. KaléL.V. SchultenK. ChipotC. TajkhorshidE. Scalable molecular dynamics on CPU and GPU architectures with NAMD.J. Chem. Phys.2020153404413010.1063/5.0014475 32752662
    [Google Scholar]
  68. KokhD.B. DoserB. RichterS. OrmersbachF. ChengX. WadeR.C. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.J. Chem. Phys.20201531212510210.1063/5.0019088 33003755
    [Google Scholar]
  69. Advanced Chemistry Development:https://www.acdlabs.com2015
  70. Avogadro: an open-source molecular builder and visualization tool. http://avogadro.cc/2021
  71. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  72. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  73. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z 23379370
    [Google Scholar]
  74. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  75. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
/content/journals/cad/10.2174/0115734099247899240326073802
Loading
/content/journals/cad/10.2174/0115734099247899240326073802
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test