Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objectives

The study aimed to explore the crucial genes involved in cancer-related biological processes, including EMT, autophagy, apoptosis, anoikis, and metastasis. It also sought to identify common genes among the pathways linked to these biological processes, determine the level of Bcl-2 expression in various types of cancers, and find a potent inhibitor of Bcl-2 among natural compounds.

Methods

Common genes involved in the pathways related to EMT, autophagy, apoptosis, anoikis, and metastasis were explored, and the level of the most frequently overexpressed gene that was Bcl-2, in various types of cancers was analyzed by gene expression analysis. A set of 102 natural compounds was sorted according to their docking scores using molecular docking and filtering. The top-ranked molecule was chosen for additional molecular dynamics (MD) simulation for 100 ns. Differential gene expression analysis was performed for Dioscin using GEO2R.

Results

The study identified four common genes, Bcl-2, Bax, BIRC3, and CHUK, among the pathways linked to EMT, autophagy, apoptosis, anoikis, and metastasis. Bcl-2 was highly overexpressed in many cancers, including Acute Myeloid Leukemia, Diffuse large B cell lymphoma, and Thymoma. The Dioscin structure in the Bcl-2 binding site received the highest docking score and the most relevant interactions. Dioscin's determined binding free energy by MM/GBSA was -52.21 kcal/mol, while the same calculated by MM/PBSA was -9.18 kcal/mol. A p-value of less than 0.05 was used to determine the statistical significance of the analysis performed using GEO2R. It was observed that Dioscin downregulates Bcl-2, BIRC3, and CHUK and upregulates the pro-apoptotic protein Bax.

Conclusion

The study concluded that Dioscin has the potential to act as a protein inhibitor, with a noteworthy value of binding free energy and relevant interactions with the Bcl-2 binding site. Dioscin might be a good alternative for targeting multiple cancer pathways through a single target.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099279130231211053542
2024-02-19
2025-10-17
Loading full text...

Full text loading...

References

  1. Mohamad RosdiM.N. Mohd ArifS. Abu BakarM.H. RazaliS.A. Mohamed ZulkifliR. Ya’akobH. Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins.Apoptosis2018231274010.1007/s10495‑017‑1434‑729204721
    [Google Scholar]
  2. FesikS.W. Promoting apoptosis as a strategy for cancer drug discovery.Nat. Rev. Cancer200551187688510.1038/nrc173616239906
    [Google Scholar]
  3. KakavandiE. ShahbahramiR. GoudarziH. EslamiG. FaghihlooE. Anoikis resistance and oncoviruses.J. Cell. Biochem.201811932484249110.1002/jcb.2636328836703
    [Google Scholar]
  4. GapuzanM.E.R. SchmahO. PollockA.D. HoffmannA. GilmoreT.D. Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras.Oncogene200524436574658310.1038/sj.onc.120880916027734
    [Google Scholar]
  5. ChiarugiP. Anoikis: A necessary death program for anchorage-dependent cells.Biochem. Pharmacol.2008761113521364
    [Google Scholar]
  6. FrischS. M. ScreatonR. A. Anoikis mechanisms.Curr. Opin. Cell Biol.200113555556210.1016/S0955‑0674(00)00251‑9
    [Google Scholar]
  7. AdeshakinF.O. AdeshakinA.O. AfolabiL.O. YanD. ZhangG. WanX. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming.Front. Oncol.20211162657710.3389/fonc.2021.62657733854965
    [Google Scholar]
  8. LuoJ.L. KamataH. KarinM. IKK/NF- B signaling: Balancing life and death - a new approach to cancer therapy.J. Clin. Invest.2005115102625263210.1172/JCI2632216200195
    [Google Scholar]
  9. SuvarnaV. SinghV. MurahariM. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy.Eur. J. Pharmacol.201986217265510.1016/j.ejphar.2019.17265531494078
    [Google Scholar]
  10. MoldoveanuT. CzabotarP.E. BAX, BAK, and BOK: A coming of age for the BCL-2 family effector proteins.Cold Spring Harb. Perspect. Biol.2020124a03631910.1101/cshperspect.a03631931570337
    [Google Scholar]
  11. WangD. BerglundA. KenchappaR.S. ForsythP.A. MuléJ.J. EtameA.B. BIRC3 is a novel driver of therapeutic resistance in Glioblastoma.Sci. Rep.2016612171010.1038/srep2171026888114
    [Google Scholar]
  12. PaulA. EdwardsJ. PepperC. MackayS. Inhibitory-κb kinase (IKK) α and nuclear factor-κB (NFκB)-inducing kinase (NIK) as anti-cancer drug targets.Cells201871017610.3390/cells710017630347849
    [Google Scholar]
  13. CavalcanteG.C. SchaanA.P. CabralG.F. Santana-da-SilvaM.N. PintoP. VidalA.F. Ribeiro-dos-SantosÂ. A cell’s fate: An overview of the molecular biology and genetics of apoptosis.Int. J. Mol. Sci.20192017413310.3390/ijms2017413331450613
    [Google Scholar]
  14. DadsenaS. KingL.E. García-SáezA.J. Apoptosis regulation at the mitochondria membrane level.Biochim. Biophys. Acta Biomembr.202118631218371610.1016/j.bbamem.2021.18371634343535
    [Google Scholar]
  15. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑931711497
    [Google Scholar]
  16. SakamotoS. KyprianouN. Targeting anoikis resistance in prostate cancer metastasis.Mol. Aspects Med.201031220521410.1016/j.mam.2010.02.00120153362
    [Google Scholar]
  17. PaoliP. GiannoniE. ChiarugiP. Anoikis molecular pathways and its role in cancer progression.Biochim. Biophys. Acta Mol. Cell Res.20131833123481349810.1016/j.bbamcr.2013.06.02623830918
    [Google Scholar]
  18. DipaloM. McGuireA.F. LouH.Y. CaprettiniV. MelleG. BrunoG. LubranoC. MatinoL. LiX. De AngelisF. CuiB. SantoroF. Cells adhering to 3D vertical nanostructures: Cell membrane reshaping without stable internalization.Nano Lett.20181896100610510.1021/acs.nanolett.8b0316330091365
    [Google Scholar]
  19. WasH. KrolS.K. RotiliD. MaiA. WojtasB. KaminskaB. MaleszewskaM. Histone deacetylase inhibitors exert anti-tumor effects on human adherent and stem-like glioma cells.Clin. Epigenetics20191111110.1186/s13148‑018‑0598‑530654849
    [Google Scholar]
  20. SinghR. SinghS.K. LillardJ.W.J.Jr SinghR. shy Role of natural compounds in preventing and treating breast cancer.Front. Biosci.202012113716010.2741/s54432114452
    [Google Scholar]
  21. ZhaiK. SiddiquiM. AbdellatifB. LiskovaA. KubatkaP. BüsselbergD. Natural compounds in glioblastoma therapy: Preclinical insights, mechanistic pathways, and outlook.Cancers20211310231710.3390/cancers1310231734065960
    [Google Scholar]
  22. SouersA.J. LeversonJ.D. BoghaertE.R. AcklerS.L. CatronN.D. ChenJ. DaytonB.D. DingH. EnschedeS.H. FairbrotherW.J. HuangD.C.S. HymowitzS.G. JinS. KhawS.L. KovarP.J. LamL.T. LeeJ. MaeckerH.L. MarshK.C. MasonK.D. MittenM.J. NimmerP.M. OleksijewA. ParkC.H. ParkC.M. PhillipsD.C. RobertsA.W. SampathD. SeymourJ.F. SmithM.L. SullivanG.M. TahirS.K. TseC. WendtM.D. XiaoY. XueJ.C. ZhangH. HumerickhouseR.A. RosenbergS.H. ElmoreS.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.Nat. Med.201319220220810.1038/nm.304823291630
    [Google Scholar]
  23. LyuL. CuiH. ShaoM. FuY. ZhaoR. ChenQ. Computational medicine: Past, present and future.Chin. J. Integr. Med.202228545346210.1007/s11655‑021‑3453‑z34546537
    [Google Scholar]
  24. KumarS. DasA. A cocktail of natural compounds holds promise for new immunotherapeutic potential in head and neck cancer.Chin. J. Integr. Med.2023Apr10.1007/s11655‑023‑3694‑037118529
    [Google Scholar]
  25. HerishanuY. Pérez-GalánP. LiuD. BiancottoA. PittalugaS. VireB. GibelliniF. NjugunaN. LeeE. StennettL. RaghavachariN. LiuP. McCoyJ.P. RaffeldM. Stetler-StevensonM. YuanC. SherryR. ArthurD.C. MaricI. WhiteT. MartiG.E. MunsonP. WilsonW.H. WiestnerA. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia.Blood2011117256357410.1182/blood‑2010‑05‑28498420940416
    [Google Scholar]
  26. WangY. LiuZ. ShuS. CaiJ. TangC. DongZ. AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury.Front. Physiol.20201161973010.3389/fphys.2020.61973033391038
    [Google Scholar]
  27. MorganD. GargM. TergaonkarV. TanS.Y. SethiG. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis.Biochim. Biophys. Acta Rev. Cancer20201874218844910.1016/j.bbcan.2020.18844933058996
    [Google Scholar]
  28. ZhaoM. KongL. LiuY. QuH. dbEMT: An epithelial-mesenchymal transition associated gene resource.Sci. Rep.2015511145910.1038/srep1145926099468
    [Google Scholar]
  29. ZhaoM. LiuY. ZhengC. QuH. dbEMT 2.0: An updated database for epithelial-mesenchymal transition genes with experimentally verified information and precalculated regulation information for cancer metastasis.J Genet Genomics2019461259559710.1016/j.jgg.2019.11.010
    [Google Scholar]
  30. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  31. Koehler LemanJ. D’AvinoA.R. BhatnagarY. GrayJ.J. Comparison of NMR and crystal structures of membrane proteins and computational refinement to improve model quality.Proteins2018861577410.1002/prot.2540229044728
    [Google Scholar]
  32. KrishnanV. RuppB. Macromolecular structure determination: Comparison of X-ray crystallography and NMR spectroscopy.Encyclopedia of Life SciencesWiley201210.1002/9780470015902.a0002716.pub2
    [Google Scholar]
  33. HarrisK.D.M. NMR Crystallography as a vital tool in assisting crystal structure determination from powder XRD data.Crystals2022129127710.3390/cryst12091277
    [Google Scholar]
  34. OltersdorfT. ElmoreS.W. ShoemakerA.R. ArmstrongR.C. AugeriD.J. BelliB.A. BrunckoM. DeckwerthT.L. DingesJ. HajdukP.J. JosephM.K. KitadaS. KorsmeyerS.J. KunzerA.R. LetaiA. LiC. MittenM.J. NettesheimD.G. NgS. NimmerP.M. O’ConnorJ.M. OleksijewA. PetrosA.M. ReedJ.C. ShenW. TahirS.K. ThompsonC.B. TomaselliK.J. WangB. WendtM.D. ZhangH. FesikS.W. RosenbergS.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature2005435704267768110.1038/nature0357915902208
    [Google Scholar]
  35. AnantramA. KundaikarH. DeganiM. PrabhuA. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity.J. Biomol. Struct. Dyn.201937123109312110.1080/07391102.2018.150837130526410
    [Google Scholar]
  36. KovermannM. RogneP. Wolf-WatzM. Protein dynamics and function from solution state NMR spectroscopy.Q. Rev. Biophys.201649e610.1017/S003358351600001927088887
    [Google Scholar]
  37. TutumluG. DoganB. AvsarT. OrhanM.D. CalisS. DurdagiS. Integrating ligand and target-driven based virtual screening approaches with in vitro human cell line models and time-resolved fluorescence resonance energy transfer assay to identify novel hit compounds against BCL-2.Front Chem.2020816710.3389/fchem.2020.0016732328476
    [Google Scholar]
  38. BohgC. ÖsterC. UteschT. BischoffS. LangeS. ShiC. SunH. LangeA. A combination of solid-state NMR and MD simulations reveals the binding mode of a rhomboid protease inhibitor.Chem. Sci.20211238127541276210.1039/D1SC02146J34703562
    [Google Scholar]
  39. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  40. KumariN. DalalV. KumarP. RathS.N. Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel.J. Biomol. Struct. Dyn.20224062395240610.1080/07391102.2020.183955833103598
    [Google Scholar]
  41. EasyDockVina2: Graphical User Interface for Ligand Optimization and High throughput Virtual Screening with AutoDock Vina.201910.5281/zenodo.3732170
  42. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab29433950214
    [Google Scholar]
  43. GROMACS 2023 Manual.Available from: https://zenodo.org/records/7588711
  44. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  45. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  46. ChatterjeeS. ChakrabortyR. HasijaY. Polymorphisms at site 469 of B-RAF protein associated with skin melanoma may be correlated with dabrafenib resistance: An in silico study.J. Biomol. Struct. Dyn.20224021108621087710.1080/07391102.2021.195057134278963
    [Google Scholar]
  47. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  48. AumsuwanP. KhanS.I. KhanI.A. WalkerL.A. DasmahapatraA.K. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.Data Brief2016827227910.1016/j.dib.2016.05.04027331101
    [Google Scholar]
  49. BentR. MollL. GrabbeS. BrosM. Interleukin-1 beta—a friend or foe in malignancies?Int. J. Mol. Sci.2018198215510.3390/ijms1908215530042333
    [Google Scholar]
  50. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  51. KapoorI. BodoJ. HillB.T. HsiE.D. AlmasanA. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance.Cell Death Dis.2020111194110.1038/s41419‑020‑03144‑y33139702
    [Google Scholar]
  52. LijianS. LixianW. DaohongZ. Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor κB kinase.Transl Cancer Res20121210010810.3978/j.issn.2218‑676X.2012.05.04
    [Google Scholar]
  53. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑632958760
    [Google Scholar]
  54. RathoreR. McCallumJ.E. VargheseE. FloreaA.M. BüsselbergD. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs).Apoptosis201722789891910.1007/s10495‑017‑1375‑128424988
    [Google Scholar]
  55. RobertsonL.E. PlunkettW. McConnellK. KeatingM.J. McDonnellT.J. Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome.Leukemia.1996103456459
    [Google Scholar]
  56. AsslaberD. WachtN. LeischM. QiY. MaedingN. HufnaglC. JanskoB. ZaborskyN. VillungerA. HartmannT.N. GreilR. EgleA. BIRC3 expression predicts CLL progression and defines treatment sensitivity via enhanced NF-kB nuclear translocation.Clin. Cancer Res.20192561901191210.1158/1078‑0432.CCR‑18‑154830487125
    [Google Scholar]
  57. RossiD. FangazioM. RasiS. VaisittiT. MontiS. CrestaS. ChiarettiS. Del GiudiceI. FabbriG. BruscagginA. SpinaV. DeambrogiC. MarinelliM. FamàR. GrecoM. DanieleG. ForconiF. GatteiV. BertoniF. DeaglioS. PasqualucciL. GuariniA. Dalla-FaveraR. FoàR. GaidanoG. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia.Blood2012119122854286210.1182/blood‑2011‑12‑39567322308293
    [Google Scholar]
  58. RobertsA.W. DavidsM.S. PagelJ.M. KahlB.S. PuvvadaS.D. GerecitanoJ.F. KippsT.J. AndersonM.A. BrownJ.R. GressickL. WongS. DunbarM. ZhuM. DesaiM.B. CerriE. Heitner EnschedeS. HumerickhouseR.A. WierdaW.G. SeymourJ.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia.N. Engl. J. Med.2016374431132210.1056/NEJMoa151325726639348
    [Google Scholar]
  59. RoohollahiK. de JongY. PaiG. ZainiM.A. de LintK. SieD. RooimansM.A. RockxD. HoskinsE.E. AmezianeN. WolthuisR. JoenjeH. WellsS.I. DorsmanJ. BIRC2–BIRC3 amplification: A potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia.Sci. Rep.20221214510.1038/s41598‑021‑04042‑934997070
    [Google Scholar]
  60. FrazziR. BIRC3 and BIRC5: Multi‐faceted inhibitors in cancer.Cell Biosci.2021111810.1186/s13578‑020‑00521‑033413657
    [Google Scholar]
  61. CetraroP. Plaza-DiazJ. MacKenzieA. Abadía-MolinaF. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer.Cancers2022147167110.3390/cancers1407167135406442
    [Google Scholar]
  62. ChotaA. GeorgeB.P. AbrahamseH. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death.Oncotarget202112161615162610.18632/oncotarget.2803134381566
    [Google Scholar]
  63. LiuZ. DingY. YeN. WildC. ChenH. ZhouJ. Direct activation of bax protein for cancer therapy.Med. Res. Rev.201636231334110.1002/med.2137926395559
    [Google Scholar]
  64. ZhangZ. ZhaoS. PeiJ. HouL. LuanS. DengH. LiuD. HuangM. ZhaoL. Optimization of BAX trigger site activator BTSA1 with improved antitumor potency and in vitro ADMET properties.Eur. J. Med. Chem.202324811507610.1016/j.ejmech.2022.11507636680883
    [Google Scholar]
  65. YueX. ChenQ. HeJ. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies.Cancer Cell Int.202020152410.1186/s12935‑020‑01614‑z33292251
    [Google Scholar]
  66. CamposE.V. PintoR. Targeted therapy with a selective BCL-2 inhibitor in older patients with acute myeloid leukemia.Hematol. Transfus. Cell Ther.201941216917710.1016/j.htct.2018.09.00131084767
    [Google Scholar]
  67. NiuQ. DengH. ZhangZ. XuQ. LuanS. HuangM. LiuD. ZhaoL. Design, synthesis and biological evaluation of dual Bcl-2/Mcl-1 inhibitors bearing 2-(1H-indol-4-yl)benzoic acid scaffold.Bioorg. Med. Chem. Lett.20214712821510.1016/j.bmcl.2021.12821534153472
    [Google Scholar]
  68. BirkinshawR.W. GongJ. LuoC.S. LioD. WhiteC.A. AndersonM.A. BlomberyP. LesseneG. MajewskiI.J. ThijssenR. RobertsA.W. HuangD.C.S. ColmanP.M. CzabotarP.E. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations.Nat. Commun.2019101238510.1038/s41467‑019‑10363‑131160589
    [Google Scholar]
  69. GhahremanianS. RashidiM.M. RaeisiK. ToghraieD. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review.J. Mol. Liq.202235411890110.1016/j.molliq.2022.11890135309259
    [Google Scholar]
  70. KrishnaS. KumarS.B. MurthyT.P.K. MurahariM. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy.Comput. Biol. Med.202113410445510.1016/j.compbiomed.2021.10445533962088
    [Google Scholar]
  71. AlmansourN.M. AllemailemK.S. Abd El AtyA.A. IsmailE.I.F. IbrahimM.A.A. In silico mining of natural products atlas (NPAtlas) database for identifying effective Bcl-2 inhibitors: Molecular docking, molecular dynamics, and pharmacokinetics characteristics.Molecules202328278310.3390/molecules2802078336677841
    [Google Scholar]
  72. MaksimovE.G. ProtasovaE.A. TsoraevG.V. YaroshevichI.A. MaydykovskiyA.I. ShirshinE.A. GostevT.S. JelzowA. MoldenhauerM. SlonimskiyY.B. SluchankoN.N. FriedrichT. Probing of carotenoid-tryptophan hydrogen bonding dynamics in the single-tryptophan photoactive Orange Carotenoid Protein.Sci. Rep.20201011172910.1038/s41598‑020‑68463‑832678150
    [Google Scholar]
  73. AinsleyJ. MulhollandA.J. BlackG.W. SparaganoO. ChristovC.Z. Karabencheva-ChristovaT.G. Structural insights from molecular dynamics simulations of tryptophan 7-halogenase and tryptophan 5-halogenase.ACS Omega2018354847485910.1021/acsomega.8b0038531458701
    [Google Scholar]
  74. de JesusA.J. AllenT.W. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch.Biochim. Biophys. Acta Biomembr.20131828286487610.1016/j.bbamem.2012.09.00922989724
    [Google Scholar]
  75. WangL. MengQ. WangC. LiuQ. PengJ. HuoX. SunH. MaX. LiuK. Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition.J. Nat. Prod.201376590991410.1021/np400071c23621869
    [Google Scholar]
  76. WeiY. XuY. HanX. QiY. XuL. XuY. YinL. SunH. LiuK. PengJ. Anti-cancer effects of dioscin on three kinds of human lung cancer cell lines through inducing DNA damage and activating mitochondrial signal pathway.Food Chem. Toxicol.20135911812810.1016/j.fct.2013.05.05423764357
    [Google Scholar]
  77. ZhaoX. TaoX. XuL. YinL. QiY. XuY. HanX. PengJ. Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa cells through ROS-mediated DNA damage and the mitochondrial signaling pathway.Molecules201621673010.3390/molecules2106073027271587
    [Google Scholar]
  78. ChenJ. LiH. ZhangX. XiongC. RuanJ. Dioscin-induced apoptosis of human LNCaP prostate carcinoma cells through activation of caspase-3 and modulation of Bcl-2 protein family.J. Huazhong Univ. Sci. Technolog. Med. Sci.201434112513010.1007/s11596‑014‑1243‑y24496691
    [Google Scholar]
  79. GaoL.L. LiF.R. JiaoP. YangM.F. ZhouX.J. SiY.H. JiangW.J. ZhengT.T. Paris chinensis dioscin induces G2/M cell cycle arrest and apoptosis in human gastric cancer SGC-7901 cells.World J. Gastroenterol.201117394389439510.3748/wjg.v17.i39.438922110264
    [Google Scholar]
  80. HuM. XuL. YinL. QiY. LiH. XuY. HanX. PengJ. WanX. Cytotoxicity of dioscin in human gastric carcinoma cells through death receptor and mitochondrial pathways.J. Appl. Toxicol.201333871272210.1002/jat.271522334414
    [Google Scholar]
  81. ChanS.H. LiangP.H. GuhJ.H. An integrated approach to elucidate signaling pathways of dioscin-induced apoptosis, energy metabolism and differentiation in acute myeloid leukemia.Naunyn Schmiedebergs Arch. Pharmacol.2018391658760210.1007/s00210‑018‑1484‑629594316
    [Google Scholar]
  82. WangY. HeQ.Y. ChiuJ.F. Dioscin induced activation of p38 MAPK and JNK via mitochondrial pathway in HL-60 cell line.Eur. J. Pharmacol.2014735525810.1016/j.ejphar.2014.04.01824755146
    [Google Scholar]
  83. LiuW. ZhaoZ. WangY. LiW. SuQ. JiaQ. ZhangJ. ZhangX. ShenJ. YinJ. Dioscin inhibits stem-cell-like properties and tumor growth of osteosarcoma through Akt/GSK3/β-catenin signaling pathway.Cell Death Dis.20189334310.1038/s41419‑018‑0363‑x29497056
    [Google Scholar]
  84. RameshP. MedemaJ.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy.Apoptosis2020255-630532010.1007/s10495‑020‑01601‑932335811
    [Google Scholar]
  85. SuraweeraC.D. BanjaraS. HindsM.G. KvansakulM. Metazoans and intrinsic apoptosis: An evolutionary analysis of the Bcl-2 family.Int. J. Mol. Sci.2022237369110.3390/ijms2307369135409052
    [Google Scholar]
  86. SinghR. LetaiA. SarosiekK. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins.Nat. Rev. Mol. Cell Biol.201920317519310.1038/s41580‑018‑0089‑830655609
    [Google Scholar]
  87. MandalR. BarrónJ.C. KostovaI. BeckerS. StrebhardtK. Caspase-8: The double-edged sword.Biochim. Biophys. Acta Rev. Cancer20201873218835710.1016/j.bbcan.2020.18835732147543
    [Google Scholar]
  88. TummersB. GreenD.R. Caspase‐8: Regulating life and death.Immunol. Rev.20172771768910.1111/imr.1254128462525
    [Google Scholar]
  89. VieiraH.L.A. BoyaP. CohenI. El HamelC. HaouziD. DruillenecS. BelzacqA.S. BrennerC. RoquesB. KroemerG. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-XL.Oncogene200221131963197710.1038/sj.onc.120527011960369
    [Google Scholar]
  90. PisaniC. RamellaM. BoldoriniR. LoiG. BilliaM. BoccafoschiF. VolpeA. KrengliM. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose.Sci. Rep.2020101705010.1038/s41598‑020‑64062‑932341393
    [Google Scholar]
  91. EdlichF. BCL-2 proteins and apoptosis: Recent insights and unknowns.Biochem. Biophys. Res. Commun.20185001263410.1016/j.bbrc.2017.06.19028676391
    [Google Scholar]
  92. ChenX.Y. ChenY. QuC.J. PanZ.H. QinY. ZhangX. LiuW.J. LiD.F. ZhengQ. Vitamin-C induces human melanoma A375 cell apoptosis via Bax‑ and Bcl‑2‑mediated mitochondrial pathways.Oncol. Lett.20191843880388610.3892/ol.2019.1068631516599
    [Google Scholar]
  93. BertheletJ. DubrezL. Regulation of apoptosis by inhibitors of apoptosis (IAPs).Cells20132116318710.3390/cells201016324709650
    [Google Scholar]
  94. HegdeR. SrinivasulaS.M. ZhangZ. WassellR. MukattashR. CilentiL. DuBoisG. LazebnikY. ZervosA.S. Fernandes-AlnemriT. AlnemriE.S. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction.J. Biol. Chem.2002277143243810.1074/jbc.M10972120011606597
    [Google Scholar]
  95. YuanJ. ZhangQ. WuS. YanS. ZhaoR. SunY. TianX. ZhouK. MiRNA-223-3p affects mantle cell lymphoma development by regulating the CHUK/NF-ƘB2 signaling pathway.OncoTargets Ther.2021141553156410.2147/OTT.S28348633688203
    [Google Scholar]
  96. RahalR. FrickM. RomeroR. KornJ.M. KridelR. Chun ChanF. MeissnerB. BhangH. RuddyD. KauffmannA. FarsidjaniA. DertiA. RakiecD. NaylorT. PfisterE. KovatsS. KimS. DietzeK. DörkenB. SteidlC. TzankovA. HummelM. MonahanJ. MorrisseyM.P. FritschC. SellersW.R. CookeV.G. GascoyneR.D. LenzG. StegmeierF. Pharmacological and genomic profiling identifies NF-κB–targeted treatment strategies for mantle cell lymphoma.Nat. Med.2014201879210.1038/nm.343524362935
    [Google Scholar]
  97. LiT. MorganM.J. ChoksiS. ZhangY. KimY.S. LiuZ. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation.Nat. Immunol.201011979980510.1038/ni.191820711193
    [Google Scholar]
  98. GongX. YangM. HeC. BiY. ZhangC. LiM. XiaoP. Plant pharmacophylogeny: Review and future directions.Chin. J. Integr. Med.202228656757410.1007/s11655‑020‑3270‑933170942
    [Google Scholar]
  99. PatelA. SoniA. SiddiqiN. J. SharmaP. An insight into the anticancer mechanism of Tribulus terrestris extracts on human breast cancer cells.3 Biotech2019925810.1007/s13205‑019‑1585‑z
    [Google Scholar]
  100. DinchevD. JandaB. EvstatievaL. OleszekW. AslaniM.R. KostovaI. Distribution of steroidal saponins in Tribulus terrestris from different geographical regions.Phytochemistry200869117618610.1016/j.phytochem.2007.07.00317719068
    [Google Scholar]
  101. HuL. ChenD. WangY. QinY. HuangP. YuL. LiaoJ. HuaX. Smilax china L. rhizome extract inhibits nuclear factor-κB and induces apoptosis in ovarian cancer cells.Chin. J. Integr. Med.2015211290791510.1007/s11655‑014‑1788‑925511428
    [Google Scholar]
  102. SharmaV. HemK. SethA. MauryaS. Solanum indicum Linn.: An ethnopharmacological, phytochemical and pharmacological review.Curr. Res. J. Pharm. Allied Sci.2017119
    [Google Scholar]
  103. Kumar SinghS. PatraA. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.).J. Integr. Med.201816427328210.1016/j.joim.2018.04.00529706573
    [Google Scholar]
  104. JiaoY. XiongY. HeL. YangZ. YuanH. LiuD. LiR. SongR. YinY. Dioscorea deltoidea Leaf Extract (DDLE) targets PI3K/AKT/mTOR pathway and inhibits ovarian cancer cell growth.Dokl. Biochem. Biophys.2021497114415010.1134/S160767292102005833895931
    [Google Scholar]
  105. GuptaD.D. MishraS. VermaS.S. ShekherA. RaiV. AwastheeN. DasT.J. PaulD. DasS.K. TagH. Chandra GuptaS. HuiP.K. Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces.J. Ethnopharmacol.202127011384210.1016/j.jep.2021.11384233460752
    [Google Scholar]
  106. GaoX. SunW. FuQ. NiuX. Rapid Identification of Steroidal Saponins in Trillium Tschonoskii Maxim by Ultraperformance Liquid Chromatography Coupled to Electrospray Ionisation Quadrupole Time‐of‐Flight Tandem Mass Spectrometry.Phytochem. Anal.201526426927810.1002/pca.256025808861
    [Google Scholar]
  107. KimE.A. JangJ.H. LeeY.H. SungE.G. SongI.H. KimJ.Y. KimS. SohnH.Y. LeeT.J. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.Apoptosis20141971165117510.1007/s10495‑014‑0994‑z24771279
    [Google Scholar]
  108. CuiL. YangG. YeJ. YaoY. LuG. ChenJ. FangL. LuS. ZhouJ. Dioscin elicits anti‐tumour immunity by inhibiting macrophage M2 polarization via JNK and STAT3 pathways in lung cancer.J. Cell. Mol. Med.202024169217923010.1111/jcmm.1556332618105
    [Google Scholar]
  109. MaoZ. HanX. ChenD. XuY. XuL. YinL. SunH. QiY. FangL. LiuK. PengJ. Potent effects of dioscin against hepatocellular carcinoma through regulating TP53‐induced glycolysis and apoptosis regulator (TIGAR)‐mediated apoptosis, autophagy, and DNA damage.Br. J. Pharmacol.2019176791993710.1111/bph.1459430710454
    [Google Scholar]
  110. GuoX. DingX. Dioscin suppresses the viability of ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling pathways.Oncol. Lett.20181569537954210.3892/ol.2018.845429805675
    [Google Scholar]
/content/journals/cad/10.2174/0115734099279130231211053542
Loading
/content/journals/cad/10.2174/0115734099279130231211053542
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ABT-737; anoikis; Apoptosis; autophagy; B cell lymphoma-2; dioscin; metastasis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test