Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

is one of the main causes of nosocomial infections. No vaccine has yet been licensed for use in humans, and efforts are still ongoing.

Objective

In the present study, we have predicted the B-cell epitopes of A. ’s outer membrane protein K (OMPK) by using epitope prediction algorithms as possible vaccine candidates for future studies.

Methods

The linear B-cell epitopes were predicted by seven different prediction tools. The 3D structure of OMPK was modeled and used for discontinuous epitope prediction by ElliPro and DiscoTope 2.0 tools. The final linear epitopes and the discontinuous epitope segments were checked for potential allergenicity, toxicity, human similarity, and experimental records. The structure and physicochemical features of the final epitopic peptide were assessed by numerous bioinformatics tools.

Results

Many B-cell epitopes were detected that could be assessed for possible antigenicity and immunogenicity. Also, an epitopic 22-mer region (peptide) of OMPK was found that contained both linear and discontinuous B-cell epitopes. This epitopic peptide has been found to possess appropriate physicochemical and structural properties to be an vaccine candidate.

Conclusion

Altogether, here, the high immunogenic B-cell epitopes of OMPK have been identified, and a high immunogenic 22-mer peptide as an vaccine candidate has been introduced. The / studies of this peptide are recommended to decide its real efficacy and efficiency.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099281401240118054834
2024-01-29
2025-10-17
Loading full text...

Full text loading...

References

  1. SikoraA. ZahraF. Nosocomial Infections.Stat.Pearls2022
    [Google Scholar]
  2. Garnacho-MonteroJ. TimsitJ.F. Managing acinetobacter baumannii infections.Curr. Opin. Infect. Dis.2019321697610.1097/QCO.000000000000051830520737
    [Google Scholar]
  3. GellingsP.S. WilkinsA.A. MoriciL.A. Recent advances in the pursuit of an effective acinetobacter baumannii vaccine.Pathogens2020912106610.3390/pathogens912106633352688
    [Google Scholar]
  4. IbrahimS. Al-SaryiN. Al-KadmyI.M.S. AzizS.N. Multidrug-resistant acinetobacter baumannii as an emerging concern in hospitals.Mol. Biol. Rep.202148106987699810.1007/s11033‑021‑06690‑634460060
    [Google Scholar]
  5. ChenW. Current advances and challenges in the development of Acinetobacter vaccines.Hum. Vaccin. Immunother.201511102495250010.1080/21645515.2015.105235426158773
    [Google Scholar]
  6. HuangW. YaoY. WangS. XiaY. YangX. LongQ. SunW. LiuC. LiY. ChuX. BaiH. YaoY. MaY. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii.Sci. Rep.2016612072410.1038/srep2072426853590
    [Google Scholar]
  7. RasooliI. AbdolhamidiR. JahangiriA. Darvish Alipour AstanehS. Outer membrane protein, oma87 prevents acinetobacter baumannii infection.Int. J. Pept. Res. Ther.20202642653266010.1007/s10989‑020‑10056‑032421073
    [Google Scholar]
  8. ZhangX. YangT. CaoJ. SunJ. DaiW. ZhangL. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant acinetobacter baumannii.Microb. Pathog.201696202510.1016/j.micpath.2016.04.01927133268
    [Google Scholar]
  9. GuoS.J. RenS. XieY.E. Evaluation of the protective efficacy of a fused OmpK/Omp22 protein vaccine candidate against acinetobacter baumannii infection in mice.Biomed. Environ. Sci.201831215515829606195
    [Google Scholar]
  10. MorielD.G. BeatsonS.A. WurpelD.J. LipmanJ. NimmoG.R. PatersonD.L. SchembriM.A. Identification of novel vaccine candidates against multidrug-resistant acinetobacter baumannii.PLoS One2013810e7763110.1371/journal.pone.007763124116234
    [Google Scholar]
  11. YangA. YangH. GuoS. XieY. MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice.Scand. J. Immunol.2019901e1276910.1111/sji.1276931006127
    [Google Scholar]
  12. IslamA.H.M.S. SinghK.K.B. IsmailA. Demonstration of an outer membrane protein that is antigenically specific for Acinetobacter baumannii.Diagn. Microbiol. Infect. Dis.2011691384410.1016/j.diagmicrobio.2010.09.00821146712
    [Google Scholar]
  13. PotocnakovaL. BhideM. PulzovaL.B. An introduction to B-cell epitope mapping and in silico epitope prediction.J. Immunol. Res.2016201611110.1155/2016/676083028127568
    [Google Scholar]
  14. FleriW. PaulS. DhandaS.K. MahajanS. XuX. PetersB. SetteA. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design.Front. Immunol.2017827810.3389/fimmu.2017.0027828352270
    [Google Scholar]
  15. KolaskarA.S. TongaonkarP.C. A semi‐empirical method for prediction of antigenic determinants on protein antigens.FEBS Lett.19902761-217217410.1016/0014‑5793(90)80535‑Q1702393
    [Google Scholar]
  16. ChouPY. FasmanG.D. Prediction of the secondary structure of proteins from their amino acid sequence.Adv. Enzymol. Relat. Areas. Mol. BiolWiley Blackwell20064745148
    [Google Scholar]
  17. KarplusP.A. SchulzG.E. Prediction of chain flexibility in proteins.Naturwissenschaften198572421221310.1007/BF01195768
    [Google Scholar]
  18. ParkerJ.M.R. GuoD. HodgesR.S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites.Biochemistry198625195425543210.1021/bi00367a0132430611
    [Google Scholar]
  19. EminiE.A. HughesJ.V. PerlowD.S. BogerJ. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide.J. Virol.198555383683910.1128/jvi.55.3.836‑839.19852991600
    [Google Scholar]
  20. ZargaranF.N. AkyaA. RezaeianS. GhadiriK. LorestaniR.C. MadanchiH. SafaeiS. RostamianM. B cell epitopes of four fimbriae antigens of klebsiella pneumoniae: A comprehensive in silico study for vaccine development.Int. J. Pept. Res. Ther.202127287588610.1007/s10989‑020‑10134‑333250677
    [Google Scholar]
  21. LarsenJ. LundO. NielsenM. Improved method for predicting linear B-cell epitopes.Immunome Res.200621210.1186/1745‑7580‑2‑216635264
    [Google Scholar]
  22. JespersenM.C. PetersB. NielsenM. MarcatiliP. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes.Nucleic Acids Res.201745W1W24W2910.1093/nar/gkx34628472356
    [Google Scholar]
  23. SahaS. RaghavaG.P.S. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network.Proteins2006651404810.1002/prot.2107816894596
    [Google Scholar]
  24. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  25. ChenV.B. ArendallW.B.III HeaddJ.J. KeedyD.A. ImmorminoR.M. KapralG.J. MurrayL.W. RichardsonJ.S. RichardsonD.C. MolProbity : All-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr.2010661122110.1107/S090744490904207320057044
    [Google Scholar]
  26. PonomarenkoJ. BuiH.H. LiW. FussederN. BourneP.E. SetteA. PetersB. ElliPro: A new structure-based tool for the prediction of antibody epitopes.BMC Bioinformatics20089151410.1186/1471‑2105‑9‑51419055730
    [Google Scholar]
  27. KringelumJ.V. LundegaardC. LundO. NielsenM. ReliableB. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking.PLOS Comput. Biol.2012812e100282910.1371/journal.pcbi.100282923300419
    [Google Scholar]
  28. IvanciucO. ScheinC.H. BraunW. SDAP: Database and computational tools for allergenic proteins.Nucleic Acids Res.200331135936210.1093/nar/gkg01012520022
    [Google Scholar]
  29. Maurer-StrohS. KrutzN.L. KernP.S. GunalanV. NguyenM.N. LimviphuvadhV. EisenhaberF. GerberickG.F. AllerCatPro—prediction of protein allergenicity potential from the protein sequence.Bioinformatics201935173020302710.1093/bioinformatics/btz02930657872
    [Google Scholar]
  30. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. RaghavaG.P.S. Open Source Drug Discovery Consortium In silico approach for predicting toxicity of peptides and proteins.PLoS One201389e7395710.1371/journal.pone.007395724058508
    [Google Scholar]
  31. AdhikariU.K. TayebiM. RahmanM.M. Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging oropouche virus.J. Immunol. Res.2018201812210.1155/2018/671808330402510
    [Google Scholar]
  32. LamiableA. ThévenetP. ReyJ. VavrusaM. DerreumauxP. TufféryP. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex.Nucleic Acids Res.201644W1W449W45410.1093/nar/gkw32927131374
    [Google Scholar]
  33. ChiangM.H. SungW.C. LienS.P. ChenY.Z. LoA.F. HuangJ.H. KuoS.C. ChongP. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology.Hum. Vaccin. Immunother.20151141065107310.1080/21645515.2015.101091025751377
    [Google Scholar]
  34. AkyaA. FarasatA. GhadiriK. RostamianM. Identification of HLA-I restricted epitopes in six vaccine candidates of Leishmania tropica using immunoinformatics and molecular dynamics simulation approaches.Infect. Genet. Evol.20197510395310.1016/j.meegid.2019.10395331284043
    [Google Scholar]
  35. TrostB. BickisM. KusalikA. Strength in numbers: Achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools.Immunome Res.200731510.1186/1745‑7580‑3‑517381846
    [Google Scholar]
  36. Chyau LiangT. Encyclopedia of Immunology.2nd ed1998
    [Google Scholar]
  37. Campos-PintoI. MéndezL. SchoutenJ. WilkinsJ. FedorovaM. PittA.R. DavisP. SpickettC.M. Epitope mapping and characterization of 4-hydroxy-2-nonenal modified-human serum albumin using two different polyclonal antibodies.Free Radic. Biol. Med.201914423424410.1016/j.freeradbiomed.2019.05.00831075498
    [Google Scholar]
  38. WangM. ZhuD. ZhuJ. NussinovR. MaB. Local and global anatomy of antibody‐protein antigen recognition.J. Mol. Recognit.2018315e269310.1002/jmr.269329218757
    [Google Scholar]
  39. KyteJ. DoolittleR.F. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.1982157110513210.1016/0022‑2836(82)90515‑07108955
    [Google Scholar]
  40. LeiY. ZhaoF. ShaoJ. LiY. LiS. ChangH. ZhangY. Application of built-in adjuvants for epitope-based vaccines.PeerJ20196e618510.7717/peerj.618530656066
    [Google Scholar]
  41. WeinbergerB. Herndler-BrandstetterD. SchwanningerA. WeiskopfD. Grubeck-LoebensteinB. Biology of immune responses to vaccines in elderly persons.Clin. Infect. Dis.20084671078108410.1086/52919718444828
    [Google Scholar]
/content/journals/cad/10.2174/0115734099281401240118054834
Loading
/content/journals/cad/10.2174/0115734099281401240118054834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test