Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Transcription factors are vital biological components that control gene expression, and their primary biological function is to recognize DNA sequences. As related research continues, it was found that the specificity of DNA-protein binding has a significant role in gene expression, regulation, and especially gene therapy. Convolutional Neural Networks (CNNs) have become increasingly popular for predicting DNa-protein-specific binding sites, but their accuracy in prediction needs to be improved.

Methods

We proposed a framework for combining Multi-Instance Learning (MIL) and a hybrid neural network named WSHNN. First, we utilized sliding windows to split the DNA sequences into multiple overlapping instances, each instance containing multiple bags. Then, the instances were encoded using a K-mer encoding. Afterward, the scores of all instances in the same bag were calculated separately by a hybrid neural network.

Results

Finally, a fully connected network was utilized as the final prediction for that bag. The framework could achieve the performances of 90.73% in Pre, 82.77% in Recall, 87.17% in Acc, 0.8657 in F1-score, and 0.7462 in MCC, respectively. In addition, we discussed the performance of K-mer encoding. Compared with other art-of-the-state efforts, the model has better performance with sequence information.

Conclusion

From the experimental results, it can be concluded that Bi-directional Long-Short-Term Memory (Bi-LSTM) can better capture the long-sequence relationships between DNA sequences (the code and data can be visited at https://github.com/baowz12345/Weak_Super_Network).

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099277249240129114123
2024-02-12
2025-10-17
Loading full text...

Full text loading...

References

  1. TompaM. LiN. BaileyT.L. ChurchG.M. De MoorB. EskinE. FavorovA.V. FrithM.C. FuY. KentW.J. MakeevV.J. MironovA.A. NobleW.S. PavesiG. PesoleG. RégnierM. SimonisN. SinhaS. ThijsG. van HeldenJ. VandenbogaertM. WengZ. WorkmanC. YeC. ZhuZ. Assessing computational tools for the discovery of transcription factor binding sites.Nat. Biotechnol.200523113714410.1038/nbt105315637633
    [Google Scholar]
  2. BhimsariaD. Rodríguez-MartínezJ.A. Mendez-JohnsonJ.L. GhoshdastidarD. VaradarajanA. BansalM. DanielsD.L. RamanathanP. AnsariA.Z. Hidden modes of DNA binding by human nuclear receptors.Nat. Commun.2023141417910.1038/s41467‑023‑39577‑037443151
    [Google Scholar]
  3. SemlowD.R. MacKrellV.A. WalterJ.C. The HMCES DNA-protein cross-link functions as an intermediate in DNA interstrand cross-link repair.Nat. Struct. Mol. Biol.202229545146210.1038/s41594‑022‑00764‑035534579
    [Google Scholar]
  4. YanevaD SparksJ L DonsbachM The FANCJ helicase unfolds DNA-protein crosslinks to promote their repair.Mol. Cell20238314356
    [Google Scholar]
  5. GershenzonN.I. StormoG.D. IoshikhesI.P. Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites.Nucleic Acids Res.20053372290230110.1093/nar/gki51915849315
    [Google Scholar]
  6. LambertS.A. JolmaA. CampitelliL.F. DasP.K. YinY. AlbuM. ChenX. TaipaleJ. HughesT.R. WeirauchM.T. The human transcription factors.Cell2018172465066510.1016/j.cell.2018.01.02929425488
    [Google Scholar]
  7. BasithS. ManavalanB. ShinT.H. LeeG. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree.Comput. Struct. Biotechnol. J.20181641242010.1016/j.csbj.2018.10.00730425802
    [Google Scholar]
  8. WangZ. TanX. LiB. Bindtransnet: A transferable transformer-based architecture for cross-cell type dna-protein binding sites prediction.Bioinformatics Research and Applications.Springer2021
    [Google Scholar]
  9. ShenL.C. LiuY. SongJ. YuD.J. SAResNet: Self-attention residual network for predicting DNA-protein binding.Brief. Bioinform.2021225bbab10110.1093/bib/bbab10133837387
    [Google Scholar]
  10. LuoH. ShanW. ChenC. DingP. LuoL. Improving language model of human genome for DNA-protein binding prediction based on task-specific pre-training.Interdiscip. Sci.2023151324336136096
    [Google Scholar]
  11. SchmidtF. KernF. EbertP. BaumgartenN. SchulzM.H. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis.Bioinformatics20193591608160910.1093/bioinformatics/bty85630304373
    [Google Scholar]
  12. SavinkovaL.K. SharypovaE.B. KolchanovN.A. In vitro methods used to study DNA-protein interactions.Biol. Bull. Rev.202111434435710.1134/S2079086421040071
    [Google Scholar]
  13. FerrazR.A.C. LopesA.L.G. da SilvaJ.A.F. MoreiraD.F.V. FerreiraM.J.N. de Almeida CoimbraS.V. DNA–protein interaction studies: A historical and comparative analysis.Plant Methods20211718210.1186/s13007‑021‑00780‑z34301293
    [Google Scholar]
  14. GuoY. LuoX. ChenL. Dna-gcn: Graph convolutional networks for predicting dna-protein binding.Intelligent Computing Theories and Application.Springer2021
    [Google Scholar]
  15. TariqS. AminA. Detection of DNA-protein binding using deep learning.IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T).Bahawalpur, Pakistan, 09-11 Jan, 20232023
    [Google Scholar]
  16. SinghN.K. KumarY. PaitandiR.P. TiwariR.K. KumarA. PandeyD.S. DNA/protein binding and anticancer activity of ruthenium (II) arene complexes based on quinoline dipyrrin.Inorg. Chim. Acta202354512124110.1016/j.ica.2022.121241
    [Google Scholar]
  17. CheethamS.W. JafraniY.M.A. AndersenS.B. Single-molecule simultaneous profiling of DNA methylation and DNA-protein interactions with Nanopore-DamID.BioRxiv2021202145575310.1101/2021.08.09.455753
    [Google Scholar]
  18. GayathriS. ViswanathamurthiP. ThuslimV. SathyaM. RanjaniM. PrabhakaranR. HaribabuJ. EcheverriaC. Synthesis, structural, DNA/protein binding and cytotoxic studies of copper(I) ∝-diimine hydrazone complexes.Inorg. Chim. Acta202253312078010.1016/j.ica.2021.120780
    [Google Scholar]
  19. Pragti KunduB.K. UpadhyayS.N. SinhaN. GangulyR. GrabchevI. PakhiraS. MukhopadhyayS. Pyrene-based fluorescent Ru( ii )-arene complexes for significant biological applications: Catalytic potential, DNA/protein binding, two photon cell imaging and in vitro cytotoxicity.Dalton Trans.202251103937395310.1039/D1DT04093F35171173
    [Google Scholar]
  20. KhanS. KhanM.U. Review on Gene regulation: DNA-protein and protein-protein interactions and their regulatory elements.J. Chem. Nutrit. Biochem.202122354510.48185/jcnb.v2i2.378
    [Google Scholar]
  21. WongK.C. ChanT.M. PengC. LiY. ZhangZ. DNA motif elucidation using belief propagation.Nucleic Acids Res.20134116e15310.1093/nar/gkt57423814189
    [Google Scholar]
  22. BeraM. DasM. DolaiM. LahaS. IslamM.M. SamantaB.C. DasA. ChoudhuriI. BhattacharyyaN. MaityT. DNA/protein binding and apoptotic-induced anticancer property of a first time reported quercetin–iron(III) complex having a secondary anionic residue: A combined experimental and theoretical approach.ACS Omega20238163664710.1021/acsomega.2c0579036643564
    [Google Scholar]
  23. DuX. HuJ. LiS. Using chou’s 5-step rule to predict dna-protein binding with multi-scale complementary feature.J. Proteome Res.20212031639165610.1021/acs.jproteome.0c0086433522829
    [Google Scholar]
  24. LiuW. LiJ. XuY. YinD. ZhuX. FuH. SuX. GuoX. Complete mapping of DNA‐protein interactions at the single‐molecule level.Adv. Sci.2021823210138310.1002/advs.202101383
    [Google Scholar]
  25. ShaytanA.K. NovikovR.V. VinnikovR.S. GribkovaA.K. GlukhovG.S. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems.Front. Mol. Biosci.20229107052610.3389/fmolb.2022.107052636589238
    [Google Scholar]
  26. LeeG. KimJ. Engineered retrons generate genome-independent protein-binding DNA for cellular control.bioRxiv2023202355655610.1101/2023.09.27.556556
    [Google Scholar]
  27. RuggianoA. RamadanK. DNA-protein crosslink proteases in genome stability.Commun. Biol.2021411110.1038/s42003‑020‑01539‑333398053
    [Google Scholar]
  28. TahirM. TayaraH. HayatM. ChongK.T. kDeepBind: Prediction of RNA-Proteins binding sites using convolution neural network and k-gram features.Chemom. Intell. Lab. Syst.202120810421710.1016/j.chemolab.2020.104217
    [Google Scholar]
  29. WeickertP. StingeleJ. DNA-protein crosslinks and their resolution.Annu. Rev. Biochem.202291115718110.1146/annurev‑biochem‑032620‑10582035303790
    [Google Scholar]
  30. TutanovO. SheferA. TsentalovichY. TamkovichS. Comparative analysis of molecular functions and biological role of proteins from cell-free DNA-protein complexes circulating in plasma of healthy females and breast cancer patients.Int. J. Mol. Sci.2023248727910.3390/ijms2408727937108441
    [Google Scholar]
  31. ZhangQ. WangS. ChenZ. HeY. LiuQ. HuangD.S. Locating transcription factor binding sites by fully convolutional neural network.Brief. Bioinform.2021225bbaa43510.1093/bib/bbaa43533498086
    [Google Scholar]
  32. ZhangQ. ZhuL. BaoW. HuangD-S. Weakly-supervised convolutional neural network architecture for predicting protein-DNA binding.IEEE/ACM Trans. Comput. Biol. Bioinformatics202017267968930106688
    [Google Scholar]
  33. PerryM. BiegertM. KollalaS.S. MallardH. SuG. KodavatiM. KreilingN. HolbrookA. GhosalG. USP11 mediates repair of DNA–protein cross-links by deubiquitinating SPRTN metalloprotease.J. Biol. Chem.202129610039610.1016/j.jbc.2021.10039633567341
    [Google Scholar]
  34. SerebreniL. StarkA. Insights into gene regulation: From regulatory genomic elements to DNA-protein and protein-protein interactions.Curr. Opin. Cell Biol.202170586610.1016/j.ceb.2020.11.00933385708
    [Google Scholar]
  35. BallakurA.A. AryaA. Empirical evaluation of gated recurrent neural network architectures in aviation delay prediction.5th International Conference on Computing, Communication and Security (ICCCS).Patna, India, 14-16 Oct, 2020.10.1109/ICCCS49678.2020.9276855
    [Google Scholar]
  36. ThatavartyA. SagyN. ErdosM.R. Detecting protein-dna binding in single molecules using antibody guided methylation.bioRxiv2023202356779210.1101/2023.11.20.567792
    [Google Scholar]
  37. ZhangY. WangZ. ZengY. ZhouJ. ZouQ. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.Brief. Bioinform.2021226bbab27310.1093/bib/bbab27334272562
    [Google Scholar]
  38. GowerR.M. LoizouN. QianX. SailanbayevA. ShulginE. RichtárikP. SGD: General analysis and improved rates.Proceedings of the 36th International Conference on Machine Learning.Long Beach, California, 2019.
    [Google Scholar]
  39. ZhangQ. ZhuL. HuangD.S. High-order convolutional neural network architecture for predicting DNA-protein binding sites.IEEE/ACM Trans. Comput. Biol. Bioinformatics20191641184119210.1109/TCBB.2018.281966029993783
    [Google Scholar]
  40. AbascalF. AcostaR. AddlemanN.J. AdrianJ. AfzalV. AkenB. AiR. AkiyamaJ.A. JammalO.A. AmrheinH. AndersonS.M. AndrewsG.R. AntoshechkinI. ArdlieK.G. ArmstrongJ. AstleyM. BanerjeeB. BarkalA.A. BarnesI.H.A. BarozziI. BarrellD. BarsonG. BatesD. BaymuradovU.K. BazileC. BeerM.A. BeikS. BenderM.A. BennettR. BouvretteL.P.B. BernsteinB.E. BerryA. BhaskarA. BignellA. BlueS.M. BodineD.M. BoixC. BoleyN. BorrmanT. BorsariB. BoyleA.P. BrandsmeierL.A. BreschiA. BresnickE.H. BrooksJ.A. BuckleyM. BurgeC.B. ByronR. CahillE. CaiL. CaoL. CartyM. CastanonR.G. CastilloA. ChaibH. ChanE.T. CheeD.R. CheeS. ChenH. ChenH. ChenJ-Y. ChenS. CherryJ.M. ChhetriS.B. ChoudharyJ.S. ChrastJ. ChungD. ClarkeD. CodyN.A.L. CoppolaC.J. CoursenJ. D’IppolitoA.M. DaltonS. DanykoC. DavidsonC. Davila-VelderrainJ. DavisC.A. DekkerJ. DeranA. DeSalvoG. Despacio-ReyesG. DeweyC.N. DickelD.E. DiegelM. DiekhansM. DileepV. DingB. DjebaliS. DobinA. DominguezD. DonaldsonS. DrenkowJ. DreszerT.R. DrierY. DuffM.O. DunnD. EastmanC. EckerJ.R. EdwardsM.D. El-AliN. ElhajjajyS.I. ElkinsK. EmiliA. EpsteinC.B. EvansR.C. EzkurdiaI. FanK. FarnhamP.J. FarrellN. FeingoldE.A. FerreiraA-M. Fisher-AylorK. FitzgeraldS. FlicekP. FooC.S. FortierK. FrankishA. FreeseP. FuS. FuX-D. FuY. Fukuda-YuzawaY. FulcinitiM. FunnellA.P.W. GabdankI. GaleevT. GaoM. GironC.G. GarvinT.H. Gelboin-BurkhartC.A. GeorgolopoulosG. GersteinM.B. GiardineB.M. GiffordD.K. GilbertD.M. GilchristD.A. GillespieS. GingerasT.R. GongP. GonzalezA. GonzalezJ.M. GoodP. GorenA. GorkinD.U. GraveleyB.R. GrayM. GreenblattJ.F. GriffithsE. GroudineM.T. GrubertF. GuM. GuigóR. GuoH. GuoY. GuoY. GursoyG. Gutierrez-ArcelusM. HalowJ. HardisonR.C. HardyM. HariharanM. HarmanciA. HarringtonA. HarrowJ.L. HashimotoT.B. HaszR.D. HatanM. HaugenE. HayesJ.E. HeP. HeY. HeidariN. HendricksonD. HeustonE.F. HiltonJ.A. HitzB.C. HochmanA. HolgrenC. HouL. HouS. HsiaoY-H.E. HsuS. HuangH. HubbardT.J. HueyJ. HughesT.R. HuntT. IbarrientosS. IssnerR. IwataM. IzuoguO. JaakkolaT. JameelN. JansenC. JiangL. JiangP. JohnsonA. JohnsonR. JungreisI. KadabaM. KasowskiM. KasparianM. KatoM. KaulR. KawliT. KayM. KeenJ.C. KelesS. KellerC.A. KelleyD. KellisM. KheradpourP. KimD.S. KirilushaA. KleinR.J. KnoechelB. KuanS. KulikM.J. KumarS. KundajeA. KutyavinT. LagardeJ. LajoieB.R. LambertN.J. LazarJ. LeeA.Y. LeeD. LeeE. LeeJ.W. LeeK. LeslieC.S. LevyS. LiB. LiH. LiN. LiS. LiX. LiY.I. LiY. LiY. LiY. LianJ. LibbrechtM.W. LinS. LinY. LiuD. LiuJ. LiuP. LiuT. LiuX.S. LiuY. LiuY. LongM. LouS. LovelandJ. LuA. LuY. LécuyerE. MaL. MackiewiczM. MannionB.J. MannstadtM. ManthravadiD. MarinovG.K. MartinF.J. MatteiE. McCueK. McEownM. McVickerG. MeadowsS.K. MeissnerA. MendenhallE.M. MesserC.L. MeulemanW. MeyerC. MillerS. MiltonM.G. MishraT. MooreD.E. MooreH.M. MooreJ.E. MooreS.H. MoranJ. MortazaviA. MudgeJ.M. MunshiN. MuradR. MyersR.M. NandakumarV. NandiP. NarasimhaA.M. NarayananA.K. NaughtonH. NavarroF.C.P. NavasP. NazarovsJ. NelsonJ. NephS. NeriF.J. NeryJ.R. NesmithA.R. NewberryJ.S. NewberryK.M. NgoV. NguyenR. NguyenT.B. NguyenT. NishidaA. NobleW.S. NovakC.S. NovoaE.M. NuñezB. O’DonnellC.W. OlsonS. OnateK.C. OttermanE. OzadamH. PaganM. PaldenT. PanX. ParkY. PartridgeE.C. PatenB. Pauli-BehnF. PazinM.J. PeiB. PennacchioL.A. PerezA.R. PerryE.H. PervouchineD.D. PhalkeN.N. PhamQ. PhanstielD.H. Plajzer-FrickI. PrattG.A. PrattH.E. PreisslS. PritchardJ.K. PritykinY. PurcaroM.J. QinQ. Quinones-ValdezG. RabanoI. RadovaniE. RajA. RajagopalN. RamO. RamirezL. RamirezR.N. RauschD. RaychaudhuriS. RaymondJ. RazaviR. ReddyT.E. ReimonnT.M. RenB. ReymondA. ReynoldsA. RhieS.K. RinnJ. RiveraM. Rivera-MuliaJ.C. RobertsB. RodriguezJ.M. RozowskyJ. RyanR. RynesE. SalinsD.N. SandstromR. SasakiT. SatheS. SavicD. ScavelliA. ScheimanJ. SchlaffnerC. SchlossJ.A. SchmitgesF.W. SeeL.H. SethiA. SettyM. ShaferA. ShanS. SharonE. ShenQ. ShenY. SherwoodR.I. ShiM. ShinS. ShoreshN. SiebenthallK. SisuC. SliferT. SloanC.A. SmithA. SnetkovaV. SnyderM.P. SpacekD.V. SrinivasanS. SrivasR. StamatoyannopoulosG. StamatoyannopoulosJ.A. StantonR. SteffanD. Stehling-SunS. StrattanJ.S. SuA. SundararamanB. SunerM-M. SyedT. SzynkarekM. TanakaF.Y. TenenD. TengM. ThomasJ.A. ToffeyD. TressM.L. TroutD.E. TrynkaG. TsujiJ. UpchurchS.A. UrsuO. Uszczynska-RatajczakB. UzielM.C. ValenciaA. BiberB.V. van der VeldeA.G. Van NostrandE.L. VaydylevichY. VazquezJ. VictorsenA. VielmetterJ. VierstraJ. ViselA. VlasovaA. VockleyC.M. VolpiS. VongS. WangH. WangM. WangQ. WangR. WangT. WangW. WangX. WangY. WatsonN.K. WeiX. WeiZ. WeisserH. WeissmanS.M. WelchR. WeliksonR.E. WengZ. WestraH-J. WhitakerJ.W. WhiteC. WhiteK.P. WildbergA. WilliamsB.A. WineD. WittH.N. WoldB. WolfM. WrightJ. XiaoR. XiaoX. XuJ. XuJ. YanK-K. YanY. YangH. YangX. YangY-W. YardımcıG.G. YeeB.A. YeoG.W. YoungT. YuT. YueF. ZaleskiC. ZangC. ZengH. ZengW. ZerbinoD.R. ZhaiJ. ZhanL. ZhanY. ZhangB. ZhangJ. ZhangJ. ZhangK. ZhangL. ZhangP. ZhangQ. ZhangX-O. ZhangY. ZhangZ. ZhaoY. ZhengY. ZhongG. ZhouX-Q. ZhuY. ZimmermanJ. SnyderM.P. GingerasT.R. MooreJ.E. WengZ. GersteinM.B. RenB. HardisonR.C. StamatoyannopoulosJ.A. GraveleyB.R. FeingoldE.A. PazinM.J. PaganM. GilchristD.A. HitzB.C. CherryJ.M. BernsteinB.E. MendenhallE.M. ZerbinoD.R. FrankishA. FlicekP. MyersR.M. Perspectives on ENCODE.Nature2020583781869369810.1038/s41586‑020‑2449‑832728248
    [Google Scholar]
  41. AlipanahiB. DelongA. WeirauchM.T. FreyB.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.Nat. Biotechnol.201533883183810.1038/nbt.330026213851
    [Google Scholar]
  42. BaoX.R. ZhuY.H. YuD.J. DeepTF: Accurate prediction of transcription factor binding sites by combining multi-scale convolution and long short-term memory neural network.Intelligence Science and Big Data Engineering. Big Data and Machine Learning: 9th International Conference.17-20 Oct, 2019, pp. 16-138.
    [Google Scholar]
  43. FouldsJ. FrankE. A review of multi-instance learning assumptions.Knowl. Eng. Rev.201025112510.1017/S026988890999035X
    [Google Scholar]
  44. GaoZ. RuanJ. Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning.Bioinformatics201733142097210510.1093/bioinformatics/btx11528334224
    [Google Scholar]
  45. KirkJ.M. KimS.O. InoueK. SmolaM.J. LeeD.M. SchertzerM.D. WootenJ.S. BakerA.R. SpragueD. CollinsD.W. HorningC.R. WangS. ChenQ. WeeksK.M. MuchaP.J. CalabreseJ.M. Functional classification of long non-coding RNAs by k-mer content.Nat. Genet.201850101474148210.1038/s41588‑018‑0207‑830224646
    [Google Scholar]
  46. BatistaJ. Vikić-TopićD. LučićB. The difference between the accuracy of real and the corresponding random model is a useful parameter for validation of two-state classification model quality.Croat. Chem. Acta201689452753410.5562/cca3117
    [Google Scholar]
  47. BaoW. GuY. ChenB. YuH. Golgi_DF: Golgi proteins classification with deep forest.Front. Neurosci.202317119782410.3389/fnins.2023.119782437250391
    [Google Scholar]
  48. BaoW CuiQ ChenB Phage_UniR_LGBM: Phage virion proteins classification with UniRep features and LightGBM model.Computat. Math. Methods Med.20222022
    [Google Scholar]
  49. BaoW. YangB. ChenB. 2-hydr_Ensemble: Lysine 2-hydroxyisobutyrylation identification with ensemble method.Chemom. Intell. Lab. Syst.202121510435110.1016/j.chemolab.2021.104351
    [Google Scholar]
  50. FarahS. David AW. HumairaN. AneelaZ. SteffenE. Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning.Renew. Sustain. Energy Rev.202216711270010.1016/j.rser.2022.112700
    [Google Scholar]
  51. JiW. SuX. PangB. LiY. RenZ. DengS. SGD-based optimization in modeling combustion kinetics: Case studies in tuning mechanistic and hybrid kinetic models.Fuel202232412456010.1016/j.fuel.2022.124560
    [Google Scholar]
  52. ZhaoZ. ChenW. WuX. ChenP.C.Y. LiuJ. LSTM network: A deep learning approach for short‐term traffic forecast.IET Intell. Transp. Syst.2017112687510.1049/iet‑its.2016.0208
    [Google Scholar]
  53. Siami-NaminiS. TavakoliN. NaminA.S. The performance of LSTM and BiLSTM in forecasting time series.IEEE International Conference on Big Data (Big Data).Los Angeles, CA, USA, 09-12 Dec, 2019.
    [Google Scholar]
  54. XuZ. LiS. DengW. Learning temporal features using LSTM-CNN architecture for face anti-spoofing.3rd IAPR Asian Conference on Pattern Recognition (ACPR).Kuala Lumpur, Malaysia, 03-06 Nov, 2015.
    [Google Scholar]
  55. ZhangY. QiaoS. JiS. LiY. DeepSite: Bidirectional LSTM and CNN models for predicting DNA-protein binding.Int. J. Mach. Learn. Cybern.202011484185110.1007/s13042‑019‑00990‑x
    [Google Scholar]
/content/journals/cad/10.2174/0115734099277249240129114123
Loading
/content/journals/cad/10.2174/0115734099277249240129114123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test