Current Analytical Chemistry - Volume 20, Issue 3, 2024
Volume 20, Issue 3, 2024
-
-
Review on Phytoremediation: Toxic Heavy Metal Removal
Among the environmental contaminants in water, heavy metals and other pollutants are becoming a common occurrence. To solve this issue, the process of phytoremediation was utilized to clear up polluted media. Heavy metal and other pollution contamination of water is becoming more common, which has prompted a conversation that goes beyond heavy metals. These "other pollutants" include a wide range of materials, such as nutrients, suspended particles, bacteria, and organic compounds like pesticides, medicines, and industrial chemicals. There are several removal approaches available to address this complex issue. The removal of specific compounds and suspended materials is the goal of physical techniques like coagulation and chemical treatments like filtering. Biological treatments use natural mechanisms to break down organic contaminants and nutrients, such as bacteria or plants. Reactive agents are used in advanced oxidation procedures like UV irradiation and ozonation to break down pollutants. Technologies, including reverse osmosis and distillation, as well as ion exchange and adsorption, are essential for eliminating contaminants from water sources. The review shows applying the phytoremediation technique with ornamental plants that have the ability to absorb and store such heavy metals in their roots and leaves. The methods were used to determine the intake and the location of accumulation in these plants discussed, respectively. To compare the levels of the heavy metals accumulated in the plant, samples were digested, dried, and subjected to several phytoremediation procedures. The use of biological remediation has drawn a lot of interest recently because of its inexpensive long-term application costs and environmental friendliness. The use of ornamental plants in phytoremediation has received little attention, and the effects of heavy metals on ornamental plants have not been extensively studied as well. Remediation of the heavy metals mediated by ornamental plants can simultaneously eliminate toxins and improve the site's appearance. The current purification techniques used to remove contaminants from wastewater are not only exceedingly expensive, but they also have a detrimental effect on the environment. The environmentally friendly process known as phytoremediation offers a cost-effective and ecologically sound alternative to the present, very expensive cleanup techniques. Some ornamental plants are suited to ingesting heavy metals and other pollutants where the maximal concentration can be determined. This method effectively removes, detoxifies, or immobilizes heavy metals using aquatic plants and ornamental plants. Review highlights include current understanding of heavy metal toxicity to ornamental plants, benefits of their application, ways to increase ornamental plants' tolerance with increased heavy metals absorption, field problems, and potential applications in the future. The assessment has been focused on the interdisciplinary aspects and understanding that this approach brings to the sustainable treatment of heavy metals. The goal of this analysis was to evaluate phytoremediation's status as an innovative technique and to discuss its potential and utility in the treatment of highly polluted water.
-
-
-
Green Synthesis Derived Novel Fe2O3/ZnO Nanocomposite for Efficient Photocatalytic Degradation of Methyl Orange Dye
Authors: Nimisha Jadon, Bhupinder Kour, Bilal A. Bhat and Harendra K. SharmaIntroduction: An eco-friendly method was reported for the synthesis of ferric oxide nanoparticles (Fe2O3), zinc oxide nanoparticles (ZnO) and Fe2O3/ZnO nanocomposite using Mangifera indica plant leaf extract as a natural reducing agent. Methods: The synthesized nanomaterials were successfully characterized by X-ray diffraction, UVvisible spectrophotometer, Photoluminescence spectroscopy and Transmission electron microscopy. The obtained XRD spectrums revealed the crystalline nature of synthesized materials and the average diameters of Fe2O3 nanoparticles, ZnO nanoparticles and Fe2O3/ZnO nanocomposite came out to be 11.33 nm, 14.31 nm and 9.80 nm, respectively. The UV-visible absorbance spectra and photoluminescence spectrums confirmed that the Fe2O3/ZnO nanocomposite was visible light active and had excitation peaks in the visible range. Results: The TEM analysis confirmed the composite and semiconductor nature of the synthesized Fe2O3/ZnO nanocomposite. Furthermore, the photocatalytic activity of Fe2O3/ZnO nanocomposite reaches about 91.07% degradation of methyl orange dye within a time period of 150 min at an optimized catalyst dose. Adsorption isotherm and kinetic study were also applied to validate the study. Conclusion: It was found that there was monolayer adsorption of methyl orange dye molecules on the surface of the synthesized catalyst under optimized experimental conditions and also, the adsorption process follows the pseudo-second-order kinetic model.
-
-
-
Heavy Metals in Blood Serum of Smokers and Non-smoking Controls
Authors: Abdulhussein A. Alkufi, Mohanad Hussain Oleiwi and Ali Abid AbojassimBackground: The analysis of heavy metals in the blood serum can serve as a reliable indicator for establishing the association between cigarette smoking and the presence of heavy metals. Methods: In this study, performed in Al-Najaf during 2023, concentrations of three heavy metals - cadmium (Cd), chromium (Cr), and lead (Pb) – were investigated in two groups: cigarette smokers, and non-smokers (the control group) by using atomic absorption spectrophotometry (AAS). Participants in this experiment were categorized into five age groups: 21-30, 31-40, 41-50, 51-60, and 61- 70. Results: The results showed that smokers displayed significantly higher blood serum concentrations of all heavy metals (Cd, Cr, and Pb) compared to non-smokers Furthermore, it is found that the mean concentrations of Cd, Cr, and Pb for smokers were 0.873±0.619 ppm, 1.957±0.883 ppm, and 0.043±0.021 ppm, respectively. For non-smokers, they were 0.197±0.165 ppm, 0.159±0.105 ppm, and 0.031±0.016 ppm, respectively. These differences were statistically significant. Overall, the mean heavy metal levels displayed a descending order in the present study, i.e., Cd > Cr > Pb. Conclusion: The concentrations of Cd and Cr in all samples of the present study were higher than the biological limit according to ACGIH. Therefore, Cd and Cr were the most critical metals accumulated in the blood of cigarette smokers. Additionally, the findings have indicated that the analysis of blood serum samples can serve as a reliable indicator for establishing the association between cigarette smoking and the presence of heavy metals.
-
-
-
Construction of a Miniaturized Electrochemical Sensor for Voltammetric Detection of 17β-Estradiol Using a g-C3N4-Decorated Gold Nanoparticles Electrode
Authors: Yue Ma, Xuqiao Liu, Kai Yan and Jingdong ZhangBackground: 17β-estradiol (E2) is a steroid hormone that has the potential to disrupt the endocrine system, leading to adverse effects on both humans and ecosystems, even when present in low concentrations. The quantitative determination of E2 is of great practical significance. Hypothesis: Electrochemical methods offer several advantages, including low cost, ease of operation, and potential for miniaturization, which makes them suitable for on-field detection applications. Methods: This research developed a miniaturized electrochemical sensor utilizing graphitic carbon nitride (g-C3N4) assembled on an AuNPs/ITO film electrode for sensitive voltammetric detection of a steroid hormone, E2. Results: Compared with AuNPs/ITO electrodes, the g-C3N4/AuNPs/ITO exhibits higher sensitivity for voltammetric detection of E2. Under optimal conditions, the differential pulse voltammetric response on the g-C3N4/AuNPs/ITO electrode was proportional to E2 concentration in the 25 ~ 600 μmol/L range, with a detection limit of 6.5 μmol/L. Conclusion: The proposed g-C3N4/AuNPs/ITO electrode exhibited a wide linear range, good selectivity, and practical applicability for determining E2 in environmental water samples with acceptable recovery.
-
-
-
Rapid Determination of Diverse Ganoderic Acids in Ganoderma Using UPLC–MS/MS
Authors: Yan Yang, Yuying Jian and Bin LiuBackground: Ganoderma is known for its pharmaceutical, nutritional, and functional benefits. Its primary bioactive components are ganoderic acids. However, previous quantification methods only analyzed an individual or limited number of ganoderic acids. This study aims to develop a reliable method for simultaneously quantifying the major ganoderic acids to enhance Ganoderma quality control and study its active ingredients. Methods: We developed a rapid quality assessment method to simultaneously determine the eleven ganoderic acids in Ganoderma using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample extraction method, along with mass spectrometric detection and chromatographic separation conditions was optimized. The separation was carried out using the ACQUITY UPLC BEH C18 column with a gradient elution of 0.1% (v/v) formic acid in water and acetonitrile. The mass spectrometry utilized negative mode electrospray ionization (ESI), with quantitative analysis being carried out in the MRM mode. Results: The calibration curves showed good correlation coefficients (r2 > 0.998). The recovery range was 89.1–114.0%. The intra-day and inter-day relative standard deviation (RSD) were below 6.8% (n = 6) and 8.1% (n = 6), respectively. Furthermore, the detection and quantification limits were 0.66–6.55 μg/kg and 2.20–21.84 μg/kg, respectively. All 11 ganoderic acids in the sample solution remained stable at room temperature for 72 hours. A total of 11 ganoderic acids were quantified in the 13 Ganoderma samples. The levels of ganoderic acids were higher in Ganoderma lucidum than in Ganoderma sinense Conclusion: The method developed in this study can quantify ganoderic acids in Ganoderma lucidum, thus establishing a technical foundation for evaluating the Ganoderma quality.
-
-
-
Quantitative Applications of ATR-FTIR Spectroscopy with Chemometrics for the Estimation of Amikacin in Amikacin Sulphate Injections
Authors: Chow J. Chen, Bontha V. S. Lokesh and Gabriel Akyirem AkowuahBackground: Amikacin belongs to the class of aminoglycoside antibiotics used in the treatment of gram-negative bacterial infections. It is resistant to the aminoglycosides modifying enzymes, making it a clinically effective drug in multidrug-resistant infections. Methods: In this study, a simple Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy was used for the quantification of amikacin in amikacin sulphate injection. The infrared spectra were generated in the spectral range of 4000–667 cm-1. The calibration curve was computed through TQ Analyst Pro edition software, and the partial least square regression analysis found the linearity in the range of 10-60% w/w. Results: The best calibration results were obtained in the spectral region from 1040 to 1020 cm-1 with a correlation coefficient (r2) of 1.000. The residual mean standard error (RMSEC) value was 0.00235. The percent relative standard deviation (%RSD) values for intra-day and inter-day precision were less than 8.0. The percent relative error (%RE) values were calculated and found in between the range of 0.52 to 5.60. The percent recovery of the amikacin estimation was 113.09 ± 4.27(n=3). Conclusion: This validated method is considered a green method, which is suitable for the routine analysis of amikacin in amikacin sulphate injections.
-
-
-
Development of an Indirect ELISA for the Detection of Lactoferrin in Type 2 Diabetes Plasma: A Novel Approach
More LessBackground: In biological systems, lactoferrin (LF) is a crucial protein for protecting the body against diseases and pathogens that can affect both humans and animals. LF is a multifunction protein that binds to different surface receptors to stimulate the innate immune system. In diabetes, lactoferrin has a direct association with inflammation. The effects of inflammation interaction are unknown but reasonably could include changes in LF, a body protein whose changed concentration correlates with type 2 diabetes (T2D). The LF content in plasma has been used as a disease biomarker, and there is a need for convenient and reliable assays. Method: An innovative indirect enzyme-linked immunosorbent assay (ELISA) was developed and applied to measure circulating lactoferrin levels as an inflammation marker in human samples, including healthy and type 2 diabetes. Results: Under optimized conditions, the proposed indirect ELISA was evaluated and linearly responded to LF standards in a 0.05–0.5 μgmL−1 range. The limit of detection (LOD) was 0.05 μgmL−1, and a reliable limit of quantification (LOQ) was 0.240 μgmL−1. Conclusion: The developed assay showed both specificity and reproducibility, indicating the utility of this indirect ELISA in LF monitoring. This study provides a definitive indirect ELISA protocol to detect various lactoferrin antigens with accurate, reliable, and reproducible data, and it could be applied for diagnosing lactoferrin-related diseases, such as type 2 diabetes. Our innovative approach provides a relatively cost-effective, sensitive, and precise way to assess LF in various human plasmas.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
