Current Analytical Chemistry - Volume 15, Issue 4, 2019
Volume 15, Issue 4, 2019
-
-
Brief Overview of Frequently used Macrolides and Analytical Techniques for their Assessment
Authors: Syed T. H. Sherazi, Sarfaraz A. Mahesar, Sirajuddin and Muhammad Ali MalahBackground: Macrolide antibiotics are known as versatile broad-spectrum antibiotics. Macrolides belong to the oldest group of antibacterial agents. The macrolides which are frequently used for clinical purposes are broadly categorized in three classes depending on the number of membered macrocyclic lactone ring. These three classes actually consist of 14, 15 or 16 atoms in macrocyclic lactone ring which are linked through glycosidic bonds. Erythromycin, azithromycin clarithromycin and roxithromycin are frequently used to control against bacterial infections. Methods: The quality assurance and quality controls are important tasks in the pharmaceutical industries. Consequently, to check the quality of drugs, there is a strong need to know about alternative analytical methods for the routine analysis. Many methods have been reported in the literature for the quantitative determination of erythromycin, clarithromycin, azithromycin and clarithromycin in pharmaceutical formulations and biological samples. Results: This review will cover a brief introduction of erythromycin, azithromycin, clarithromycin and roxithromycin as well as analytical techniques for their assessment. Each developed method has its own merits and demerits. Conclusion: Any accurate method could be used for the quality control and quality assurance of macrolide antibiotics according to the availability, performance and procedure of selected instrument as well as skill and expertise of the analyst.
-
-
-
A Review for the Synthesis of Silk Fibroin Nanoparticles with Different Techniques and Their Ability to be Used for Drug Delivery
Authors: Olga Gianak, George Z. Kyzas, Victoria F. Samanidou and Eleni A. DeliyanniBackground: Silk fibroin is the main protein of silk, and it has recently been evaluated for drug delivery applications due to its excellent properties. Specifically, silk fibroin exhibits good biocompatibility, biodegradability and low immunogenicity. Fibroin nanoparticles have attracted attention due to their high binding ability to different drugs as well as their ability for controlled drug release. The improvement of the therapeutic efficiency of drug encapsulation is important and depends on the particle size, the chemical structure and the properties of the silk fibroin nanoparticles. Methods: There is a variety of methods for the preparation of fibroin nanoparticles such as (i) electrospraying and desolvation method, (ii) supercritical fluid technologies, (iii) capillary-microdot technique, (iv) salting out etc. Furthermore, various techniques have been used for the characterization of nanoparticles such as SEM (scanning electron microscopy), TEM (transmission electron microscopy), DLS (dynamic light scattering), Zeta-potential and FTIR (Fourier transform infrared spectroscopy). Different drugs (paclitaxel, curcumin, 5-fluorouracil etc) have been encapsulated in fibroin nanoparticles. Results: Each separated synthesis method has different advantages such as (i) high yield, (ii) avoid use of toxic solvents, (iii) low cost, (iv) controllable particle size, (v) no organic solvent residue, (vi) simplicity of operation, (vii) small particles size, (viii) homeliness of operation, (ix) restrainable particle size, (x) easy and safe to operate, (xi) no use of organic solvent. Moreover, some major drugs studied are Floxuridine, Fluorouracil, Curcumin, Doxorubicin, Metotrexate, Paclitaxel and Doxorubicin, Horseradish peroxidase. All the above combinations (preparation method-drug) are studied in detail. Conclusion: Various drugs have been encapsulated successfully in silk fibroin and all of them exhibit a significant release rate. Finally, the encapsulation efficiency and release rate depend on the molecular weight of the drugs and it can be adjusted by controlling the crystallinity and concentration of silk fibroin.
-
-
-
Recent Trends in Fast Liquid Chromatography for Pharmaceutical Analysis
Authors: Najma Memon, Tahira Qureshi, Muhammad I. Bhanger and Muhammad Imran MalikBackground: Liquid chromatography is the workhorse of analytical laboratories of pharmaceutical companies for analysis of bulk drug materials, intermediates, drug products, impurities and degradation products. This efficient technique is impeded by its long and tedious analysis procedures. Continuous efforts of scientists to reduce the analysis time resulted in the development of three different approaches namely, HTLC, chromatography using monolithic columns and UHPLC. Methods: Modern column technology and advances in chromatographic stationary phase including silica-based monolithic columns and reduction in particle and column size (UHPLC) have not only revolutionized the separation power of chromatographic analysis but also have remarkably reduced the analysis time. Automated ultra high-performance chromatographic systems equipped with state-ofthe- art software and detection systems have now spawned a new field of analysis, termed as Fast Liquid Chromatography (FLC). The chromatographic approaches that can be included in FLC are hightemperature liquid chromatography, chromatography using monolithic column, and ultrahigh performance liquid chromatography. Results: This review summarizes the progress of FLC in pharmaceutical analysis during the period from year 2008 to 2017 focusing on detecting pharmaceutical drugs in various matrices, characterizing active compounds of natural products, and drug metabolites. High temperature, change in the mobile phase, use of monolithic columns, new non-porous, semi-porous and fully porous reduced particle size of/less than 3μm packed columns technology with high-pressure pumps have been extensively studied and successively applied to real samples. These factors revolutionized the fast high-performance separations. Conclusion: Taking into account the recent development in fast liquid chromatography approaches, future trends can be clearly predicated. UHPLC must be the most popular approach followed by the use of monolithic columns. Use of high temperatures during analysis is not a feasible approach especially for pharmaceutical analysis due to thermosensitive nature of analytes.
-
-
-
In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives
Authors: Emirhan Nemutlu, İpek Eroğlu, Hakan Eroğlu and Sedef KırBackground: Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation. Methods: Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample. Results: It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals. Conclusion: This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
-
-
-
Carbon Paste Modified Electrode as Powerful Sensor Approach Determination of Food Contaminants, Drug Ingredients, and Environmental Pollutants: A Review
Background: Application of electrochemical sensors for analysis of food, biological and water polluting compounds helps to speed up their analysis in the real samples. Electrochemical sensors with low cost, fast response and portable ability are a better choice compared to traditional methods for analysis of electro-active compounds such as HPLC. Therefore, in recent years, many analytical scientists have suggested this type of analytical method for analysis of food, biological compounds and water pollutants. Objective: Due to low cost, easy modification and low non-faradic current, the carbon paste electrode is a suitable choice as a working electrode in the electrochemical and especially voltammetric analysis. On the other hand, modification of carbon paste electrode can improve the quality of the sensor for the analysis of electroactive compounds at nanomolar level.
-
-
-
Electroanalysis of Tricyclic Psychotropic Drugs using Modified Electrodes
Background: Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive therapy over the years. Due to their medical importance, many analytical methods have been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness, fast, easy operation and non-destructiveness make them appropriate analytical methods for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes. During years, many electrodes are modified by a variety of modifiers and several sensors were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are one of the most important choices. Objective: Here, the application of electroanalytical methods in the determination of electroactive tricyclic psychotropic drugs will be reviewed and the nanomaterials which are used for improvements of the working electrodes will be considered.
-
-
-
Electroanalysis of Catecholamine Drugs using Graphene Modified Electrodes
Background: Catecholamine drugs are a family of electroactive pharmaceutics, which are widely analyzed through electrochemical methods. However, for low level online determination and monitoring of these compounds, which is very important for clinical and biological studies, modified electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials have been widely used as electrode modifies for these families during the years. Among them, graphene and its family, due to their remarkable properties in electrochemistry, were extensively used in modification of electrochemical sensors. Objective: In this review, working electrodes which have been modified with graphene and its derivatives and applied for electroanalyses of some important catecholamine drugs are considered.
-
-
-
Biosensors in Drug Discovery and Drug Analysis
Authors: Elif B. Aydin, Muhammet Aydin and Mustafa Kemal SezginturkBackground: The determination of drugs in pharmaceutical formulations and human biologic fluids is important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis, low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in biological fluids. The present review gives comprehensive information on the application of biosensors for drug discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors. Methods: Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements, such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility. Optical biosensors have several advantages such as direct, real-time and label-free detection of many biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes have gained attention in drug analysis owing to low background current, wide potential window range, simple surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization. Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation, crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed in detail. Results: Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and simple sample pretreatment steps. Conclusion: In recent years, drug analyses are performed using traditional techniques. These techniques have a good detection limit, but they have some limitations such as long analysis time, expensive device and experienced personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to traditional techniques. For drug determination, different electrode modification materials and different biorecognition elements are used for biosensor construction. Several biosensor construction strategies have been developed to enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological samples.
-
-
-
Electrochemical Determination of Non-Steroidal Anti-Inflammatory Drugs
Authors: Leyla Karadurmus, I. F. Sahin, Sevinc Kurbanoglu and Sibel A. OzkanElectrochemical methods have been used for the determination of nonsteroidal antiinflammatory drugs (NSAID) just as used in the determination of various drugs. Among voltammetric methods; differential pulse voltammetric method, square wave voltammetric method and linear sweep voltammetric method are the most commonly used ones. NSAIDs are widely used in the treatment of inflammatory conditions such as musculoskeletal disorders (rheumatoid arthritis, osteoarthritis, acute gouty arthritis) and dental pain, menstrual pain, postoperative pain and migraine. In this review, some selected recent electrochemical studies were selected related to the nonsteroidal antiinflammatory drug analyzes. The aim of this review is to evaluate and discuss the advantages, details and usages of electroanalytical methods in the determination of nonsteroidal anti-inflammatory drug.
-
-
-
Label-Free Electrochemical Detection of DNA Hybridization Related to Anthrax Lethal Factor by using Carbon Nanotube Modified Sensors
Authors: Hakan Karadeniz and Arzum ErdemBackground: Anthrax Lethal Factor (ANT) is the dominant virulence factor produced by B. anthracis and is the major cause of death of infected animals. In this paper, pencil graphite electrodes GE were modified with single-walled and multi-walled carbon nanotubes (CNTs) for the detection of hybridization related to the ANT DNA for the first time in the literature. Methods: The electrochemical monitoring of label-free DNA hybridization related to ANT DNA was explored using both SCNT and MCNT modified PGEs with differential pulse voltammetry (DPV). The performance characteristics of ANT-DNA hybridization on disposable GEs were explored by measuring the guanine signal in terms of optimum analytical conditions; the concentration of SCNT and MCNT, the concentrations of probe and target, and also the hybridization time. Under the optimum conditions, the selectivity of probe modified electrodes was tested and the detection limit was calculated. Results: The selectivity of ANT probes immobilized onto MCNT-GEs was tested in the presence of hybridization of probe with NC no response was observed and with MM, smaller responses were observed in comparison to full-match DNA hybridization case. Even though there are unwanted substituents in the mixture samples containing both the target and NC in the ratio 1:1 and both the target and MM in the ratio 1:1, it has been found that ANT probe immobilized CNT modified graphite sensor can also select its target by resulting with 20.9% decreased response in comparison to the one measured in the case of full-match DNA hybridization case Therefore, it was concluded that the detection of direct DNA hybridization was performed by using MCNT-GEs with an acceptable selectivity. Conclusion: Disposable SCNT/MCNT modified GEs bring some important advantages to our assay including easy use, cost-effectiveness and giving a response in a shorter time compared to unmodified PGE, carbon paste electrode and glassy carbon electrode developed for electrochemical monitoring of DNA hybridization. Consequently, the detection of DNA hybridization related to the ANT DNA by MCNT modified sensors was performed by using lower CNT, probe and target concentrations, in a shorter hybridization time and resulting in a lower detection limit according to the SCNT modified sensors. In conclusion, MCNT modified sensors can yield the possibilities leading to the development of nucleic acid sensors platforms for the improvement of fast and cost-effective detection systems with respect to DNA chip technology.
-
-
-
Determination of Probiotic Abilities and Lactic Acid Content of Pediococcus acidilactici
Authors: Merve E. Kiymaci, Mehmet Gumustas, Nurten Altanlar, Ahmet Akin, Aysegul Zenciroglu and Sibel A. OzkanBackground: Probiotics are living microorganisms that have a healthy influence on a host. Objective: The aim of this study was to isolate a probiotic Pediococcus acidilactici strain from newborn faeces and develop and optimize a selective high-performance liquid chromatography method for the determination and validation of its lactic acid content and also evaluate some probiotic characteristics. Methods: Isolated strains were identified by the API 50 CH system and 16S rDNA gene sequence analysis and tested for antibiotic susceptibility, bile salt tolerance, low pH resistance, proteolytic, haemolytic activity, as well as the production of bacteriocin, hydrogen peroxide, and lactic acid. Antimicrobial activity of selected strain against standard test microorganisms was determined by the spot lawn method and the quantitation of lactic acid was carried out by high-performance liquid chromatography on a Rezex ROA organic acid (300x7.8 mm) analytical column. Results: P. acidilactici M7 strain was evaluated as a potential probiotic due to its ability to survive at low pH values or in the presence of pepsin, pancreatin, and bile salts. The lactic acid amount of strain was found in the range between 5.59-5.94 mg mL-1 by HPLC. M7 strain was also found to be resistant to vancomycin, had no bacteriocin, and hydrogen peroxide production and was able to inhibit the growth of P. aeruginosa and E. faecalis by its lactic acid content. Conclusion: This study explains a simple, selective, and fully validated procedure for the determination of lactic acid from probiotic bacteria.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
