Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

Different types of tobacco cultivars have been used as raw material in heated tobacco to maximize the sensory richness. However, the volatile profiles of different tobacco cultivars and their correlation with the sensory quality of heated tobacco remain unknown.

Methods

In this study, untargeted metabolomics profiling followed by partial least squares-discriminant analysis (VIP>1 and <0.05) was performed to identify 446 and 445 volatile metabolites that were statistically different among three tobacco cultivars in the reconstituted leaf and the aerosol, respectively. Flue-cured tobacco K326 was rated the highest in the sensory evaluation, followed by air-cured tobaccos Badahe and Leye.

Results

Correlation analysis revealed that 56 aerosol volatiles including aldehydes, alkenes, ketones, esters and other compounds have strong relevance with the sensory attributes.

Conclusion

The identified volatile compounds can be used to assist formula design of heated tobacco and establish sensory-related breeding objectives.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110350070241108054934
2024-11-27
2025-09-30
Loading full text...

Full text loading...

/deliver/fulltext/cac/21/4/CAC-21-4-08.html?itemId=/content/journals/cac/10.2174/0115734110350070241108054934&mimeType=html&fmt=ahah

References

  1. SimonaviciusE. McNeillA. ShahabL. BroseL.S. Heat-not-burn tobacco products: a systematic literature review.Tob. Control201928558259410.1136/tobaccocontrol‑2018‑054419 30181382
    [Google Scholar]
  2. ChenM. QinY. WangS. LiuS. ZhaoG. LuH. CuiH. CaiJ. WangX. YanQ. HuaC. XieF. WanL. Electromembrane extraction of nicotine in inhaled aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco products.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022120812339110.1016/j.jchromb.2022.123391 35908439
    [Google Scholar]
  3. SchallerJ.P. KellerD. PogetL. PratteP. KaelinE. McHughD. CudazzoG. SmartD. TrickerA.R. GautierL. YerlyM. Reis PiresR. Le BouhellecS. GhoshD. HoferI. GarciaE. VanscheeuwijckP. MaederS. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol.Regul. Toxicol. Pharmacol.201681Suppl. 2S27S4710.1016/j.yrtph.2016.10.001 27720919
    [Google Scholar]
  4. FarsalinosK.E. YannovitsN. SarriT. VoudrisV. PoulasK. Nicotine delivery to the aerosol of a heat-not-burn tobacco product: comparison with a tobacco cigarette and e-cigarettes.Nicotine Tob. Res.20182081004100910.1093/ntr/ntx138 28637344
    [Google Scholar]
  5. MallockN. PieperE. HutzlerC. Henkler-StephaniF. LuchA. Heated tobacco products: A review of current knowledge and initial assessments.Front. Public Health2019728710.3389/fpubh.2019.00287 31649912
    [Google Scholar]
  6. SavareearB. ArnanzJ. BroklM. SaxtonM.J. WrightC. LiuC. FocantJ.F. Non-targeted analysis of the particulate phase of heated tobacco product aerosol and cigarette mainstream tobacco smoke by thermal desorption comprehensive two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection.J. Chromatogr. A2019160332733710.1016/j.chroma.2019.06.057 31266643
    [Google Scholar]
  7. ZhaoL. ShangS. TianY. GaoY. SongZ. PengL. LiZ. WangB. Integrative analysis of sensory evaluation and non-targeted metabolomics to unravel tobacco leaf metabolites associated with sensory quality of heated tobacco.Front. Plant Sci.202314112310010.3389/fpls.2023.1123100 36844088
    [Google Scholar]
  8. LewisR.S. Medicinal, aromatic and stimulant plants.Springer2020
    [Google Scholar]
  9. WeeksW.W. SissonV.A. ChaplinJ.F. Differences in aroma, chemistry, solubilities, and smoking quality of cured flue-cured tobaccos with aglandular and glandular trichomes.J. Agric. Food Chem.199240101911191610.1021/jf00022a037
    [Google Scholar]
  10. SchallerJ.P. PijnenburgJ.P.M. AjithkumarA. TrickerA.R. Evaluation of the Tobacco Heating System 2.2. Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2.2 aerosol.Regul. Toxicol. Pharmacol.201681Suppl. 2S48S5810.1016/j.yrtph.2016.10.016 27793747
    [Google Scholar]
  11. LiuT.Z. Relationships between chemical components and pyrolytic products and sensory quality of heated tobacco of different position flue-cured tobacco leaves.Zhongguo Yancao Kexue20234410.13496/j.issn.1007‑5119.2023.01.012
    [Google Scholar]
  12. ZhaoG.H. Differences in aroma component releases in aerosols of self-made electrically heated cigarette with different tobacco materials.Tobacco Sci. Technol.202154243010.16135/j.issn1002‑0861.2020.0457
    [Google Scholar]
  13. ChenJ. HeX. ZhangX. ChenY. ZhaoL. SuJ. QuS. JiX. WangT. LiZ. HeC. ZengE. JinY. LinZ. ZouC. The applicability of different tobacco types to heated tobacco products.Ind. Crops Prod.202116811357910.1016/j.indcrop.2021.113579
    [Google Scholar]
  14. ZhaoL. WangB. SongZ. Screening flue-cured tobacco varieties (Lines) for heat-not-burn tobacco products based on sensory evaluation.Tobacco Sci. Technol.202053212810.16135/j.issn1002‑0861.2019.0172
    [Google Scholar]
  15. CarpenterC.M. WayneG.F. ConnollyG.N. The role of sensory perception in the development and targeting of tobacco products.Addiction2007102113614710.1111/j.1360‑0443.2006.01649.x 17207131
    [Google Scholar]
  16. LiX. BinJ. YanX. DingM. YangM. Application of chromatographic technology to determine aromatic substances in tobacco during natural fermentation: A review.Separations20229818710.3390/separations9080187
    [Google Scholar]
  17. BanožićM. JokićS. AčkarĐ. BlažićM. ŠubarićD. Carbohydrates—key players in tobacco aroma formation and quality determination.Molecules2020257173410.3390/molecules25071734 32283792
    [Google Scholar]
  18. SmithM.R. ClarkB. LüdickeF. SchallerJ.P. VanscheeuwijckP. HoengJ. PeitschM.C. Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program.Regul. Toxicol. Pharmacol.201681Suppl. 2S17S2610.1016/j.yrtph.2016.07.006 27450400
    [Google Scholar]
  19. BergeronL. SandovalI.D. SanchoJ.V. LópezF.J. HernándezF. PortolésT. Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers.Trends Analyt. Chem.202113511616110.1016/j.trac.2020.116161
    [Google Scholar]
  20. Health CanadaTobacco Reporting Regulations.Canada Gazette II199913312
    [Google Scholar]
  21. GhoshD. JeannetC. An improved Cambridge filter pad extraction methodology to obtain more accurate water and “tar” values: in situ Cambridge filter pad extraction methodology. Beitrage zur Tabakforschung International/Contributions Tob.Res.2014263849
    [Google Scholar]
  22. PangZ. ZhouG. EwaldJ. ChangL. HacarizO. BasuN. XiaJ. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data.Nat. Protoc.20221781735176110.1038/s41596‑022‑00710‑w 35715522
    [Google Scholar]
  23. RomaniniE. ColangeloD. LuciniL. LambriM. Identifying chemical parameters and discriminant phenolic compounds from metabolomics to gain insight into the oxidation status of bottled white wines.Food Chem.2019288788510.1016/j.foodchem.2019.02.073 30902317
    [Google Scholar]
  24. GasparyanH. MarinerD. WrightC. NicolJ. MurphyJ. LiuC. ProctorC. Accurate measurement of main aerosol constituents from heated tobacco products (HTPs): Implications for a fundamentally different aerosol.Regul. Toxicol. Pharmacol.20189913114110.1016/j.yrtph.2018.09.016 30244041
    [Google Scholar]
  25. ForsterM. FiebelkornS. YurteriC. MarinerD. LiuC. WrightC. McAdamK. MurphyJ. ProctorC. Assessment of novel tobacco heating product THP1.0. Part 3: Comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions.Regul. Toxicol. Pharmacol.201893143310.1016/j.yrtph.2017.10.006 29080848
    [Google Scholar]
  26. FarsalinosK. GillmanI. MelvinM. PaolantonioA. GardowW. HumphriesK. BrownS. PoulasK. VoudrisV. Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids.Int. J. Environ. Res. Public Health20151243439345210.3390/ijerph120403439 25811768
    [Google Scholar]
  27. LiX. WangE. ZhangZ. TianH. XuY. HanL. HaoH. XuH. SongJ. LiuW. GaoB. ZhaoX. MaY. Low temperature catalytic pyrolysis performances of heated tobacco sheets by alkali/alkaline earth metal.J. Anal. Appl. Pyrolysis202316910585410.1016/j.jaap.2022.105854
    [Google Scholar]
  28. TanJ.N. LiN. WangX. YanJ. WentaoZ. DouY. Influence of natural deep eutectic solvents on the release of volatile compounds from heated tobacco.Ind. Crops Prod.202117411417110.1016/j.indcrop.2021.114171
    [Google Scholar]
  29. LiuJ. WanP. XieC. ChenD.W. Key aroma-active compounds in brown sugar and their influence on sweetness.Food Chem.202134512882610.1016/j.foodchem.2020.128826 33601657
    [Google Scholar]
  30. NaudéY. RohwerE.R. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry.J. Chromatogr. A20131271117618010.1016/j.chroma.2012.11.019 23219481
    [Google Scholar]
  31. Rubio-MoragaA. RamblaJ.L. Fernández-de-CarmenA. Trapero-MozosA. AhrazemO. OrzáezD. GranellA. Gómez-GómezL. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.Plant Mol. Biol.2014864-555556910.1007/s11103‑014‑0250‑5 25204497
    [Google Scholar]
  32. AasenA. J. BjarneK. AlmqvistS. EnzellC. R. Studies on the Volatile Components of Tobacco.Acta Chem. Scand.1972264993100610.3891/acta.chem.scand.26‑0993
    [Google Scholar]
  33. SlaghenaufiD. PerelloM.C. MarchandS. de RevelG. Quantification of megastigmatrienone, a potential contributor to tobacco aroma in spirits.Food Chem.2016203414810.1016/j.foodchem.2016.02.034 26948587
    [Google Scholar]
  34. ClarkT.J. BunchJ.E. Qualitative and quantitative analysis of flavor additives on tobacco products using SPME−GC−mass spectroscopy.J. Agric. Food Chem.199745384484910.1021/jf960522r
    [Google Scholar]
  35. RadulovićN. StojanovićG. PalićR. AlagićS. Chemical composition of the ether and ethyl acetate extracts of serbian selected tobacco types: Yaka, Prilep and Otlja.J. Essent. Oil Res.200618556256510.1080/10412905.2006.9699168
    [Google Scholar]
  36. LiuY.Q. HuY.C. ZhuZ. Changes of flavour components in re-dried lamina of Yunnan flue-cured tobacco during aging and their consequences on sensory test.Acta Tabacaria Sinica20040101810.3321/j.issn:1004‑5708.2004.01.001
    [Google Scholar]
  37. ZhangF.M. Aroma component analysis on mainstream cigarette smoke flavored with rose essential oil.Tobacco Sci. Technol.202053475610.16135/j.issn1002‑0861.2019.0088
    [Google Scholar]
  38. WaltonN.J. MayerM.J. NarbadA. Vanillin.Phytochemistry200363550551510.1016/S0031‑9422(03)00149‑3 12809710
    [Google Scholar]
  39. SchwanzT.G. NespecaM.G. DiasJ. BokowskiL. MarceloM.C.A. MaximianoD.H. CanovaL. Souza CruzP. PontesO.F. KaiserS.G.C. × GC-TOFMS and chemometrics approach for comparative study of volatile compound release by tobacco heating system as a function of temperature.Microchem. J.202015910557810.1016/j.microc.2020.105578
    [Google Scholar]
/content/journals/cac/10.2174/0115734110350070241108054934
Loading
/content/journals/cac/10.2174/0115734110350070241108054934
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test