Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Chalcone-type molecules are significant compounds due to their biocompatible properties. This study aimed to examine the electrochemical properties of vanillin chalcone monomer (VC) and its polymer (PANI-VC), as well as to investigate the antioxidant properties of the vanillin chalcone monomer.

Methods

VC and PANI-VC were synthesized and characterized using FTIR and UV-Vis spectroscopy. The electrochemical properties of both compounds were investigated using cyclic voltammetry. The antioxidant activity of the monomer was assessed using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay.

Results

Two oxidation peaks and one reduction peak were observed for both the monomer and polymer at pH 3 using cyclic voltammetry in Britton-Robinson buffer solution. The electrochemical oxidation mechanisms of the monomer and polymer were investigated by cyclic voltammetry, and the effects of pH and scan rate were also studied. The electrochemical oxidation mechanism was further evaluated using density functional theory (DFT) computations, revealing that the electrochemical process is adsorption-controlled. The antioxidant activity of VC was assessed using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) method.

Conclusion

Chalcone-type compounds are known for their potential antioxidant, antimicrobial, antifungal, antibacterial, antiviral, antimalarial, and neuroprotective effects. In this study, the electrochemical properties of the synthesized vanillin chalcone monomer and its polymer were examined, and their electrochemical mechanisms were evaluated through DFT calculations. The antioxidant properties of the monomer were compared to those of ascorbic acid using the DPPH method, revealing that the vanillin chalcone monomer possesses significant antioxidant activity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110339878240920052420
2024-10-02
2025-11-04
Loading full text...

Full text loading...

References

  1. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  2. SinghP. AnandA. KumarV. Recent developments in biological activities of chalcones: A mini review.Eur. J. Med. Chem.20148575877710.1016/j.ejmech.2014.08.033 25137491
    [Google Scholar]
  3. ZhouB. XingC. Diverse molecular targets for chalcones with varied bioactivities.Med. Chem. (Los Angeles)20155838840410.4172/2161‑0444.1000291 26798565
    [Google Scholar]
  4. SharmaV. KumarV. KumarP. Heterocyclic Chalcone Analogues as Potential Anticancer Agents.Anticancer. Agents Med. Chem.2013133422432
    [Google Scholar]
  5. GoM. WuX. LiuX. Chalcones: An update on cytotoxic and chemoprotective properties.Curr. Med. Chem.200512448349910.2174/0929867053363153 15720256
    [Google Scholar]
  6. ZhangY. WuJ. YingS. ChenG. WuB. XuT. LiuZ. LiuX. HuangL. ShanX. DaiY. LiangG. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury.Sci. Rep.2016612513010.1038/srep25130 27118147
    [Google Scholar]
  7. MahapatraD.K. AsatiV. BhartiS.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives.Eur. J. Med. Chem.20159283986510.1016/j.ejmech.2015.01.051 25638569
    [Google Scholar]
  8. ColeA.L. HossainS. ColeA.M. PhanstielO.IV Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents.Bioorg. Med. Chem.201624122768277610.1016/j.bmc.2016.04.045 27161874
    [Google Scholar]
  9. KumarD. KumarM. KumarA. SinghS. Chalcone and curcumin derivatives: A way ahead for malarial treatment.Mini Rev. Med. Chem.201313142116213310.2174/13895575113136660101 24160709
    [Google Scholar]
  10. MahapatraD.K. BhartiS.K. Therapeutic potential of chalcones as cardiovascular agents.Life Sci.201614815417210.1016/j.lfs.2016.02.048 26876916
    [Google Scholar]
  11. SahuN.K. BalbhadraS.S. ChoudharyJ. KohliD.V. Exploring pharmacological significance of chalcone scaffold: A review.Curr. Med. Chem.201219220922510.2174/092986712803414132 22320299
    [Google Scholar]
  12. JasimH.A. NaharL. JasimM.A. MooreS.A. RitchieK.J. SarkerS.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads.Biomolecules2021118120310.3390/biom11081203 34439870
    [Google Scholar]
  13. ChenL. ChaisiwamongkholK. ChenY. ComptonR.G. Rapid electrochemical detection of vanillin in natural vanilla.Electroanalysis20193161067107410.1002/elan.201900037
    [Google Scholar]
  14. DemircigilB.T. ÖzkanS.A. CoruhÖ. YılmazS. Electrochemical Behavior of Formoterol Fumarate and Its Determination in Capsules for Inhalation and Human Serum using Differential-Pulse and Square-Wave Voltammetry.Electroanalysis200214212212710.1002/1521‑4109(200201)14:2<122::AID‑ELAN122>3.0.CO;2‑1
    [Google Scholar]
  15. KumarS.A. TangC.F. ChenS.M. Poly(4-amino-1-1′-azobenzene-3, 4′-disulfonic acid) coated electrode for selective detection of dopamine from its interferences.Talanta200874486086610.1016/j.talanta.2007.07.015 18371720
    [Google Scholar]
  16. DiculescuV.C. KumbhatS. Oliveira-BrettA.M. Electrochemical behaviour of isatin at a glassy carbon electrode.Anal. Chim. Acta2006575219019710.1016/j.aca.2006.05.091 17723590
    [Google Scholar]
  17. LiG. QiX. WuJ. XuL. WanX. LiuY. ChenY. LiQ. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite.J. Hazard. Mater.202243612910710.1016/j.jhazmat.2022.129107 35569369
    [Google Scholar]
  18. XiaY. LiG. ZhuY. HeQ. HuC. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine.Microchem. J.202319010872610.1016/j.microc.2023.108726
    [Google Scholar]
  19. LiG. WuJ. QiX. WanX. LiuY. ChenY. XuL. Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxy-thiophene):polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin.Mater. Today Chem.20222610104310.1016/j.mtchem.2022.101043
    [Google Scholar]
  20. NaikK.M. NandibewoorS.T. Electrochemical Behavior of Chalcone at a Glassy Carbon Electrode and Its Analytical Applications.Am. J. Anal. Chem.20123965666310.4236/ajac.2012.39086
    [Google Scholar]
  21. EscarpaA. Food electroanalysis: Sense and simplicity.Chem. Rec.2012121729110.1002/tcr.201100033 22121125
    [Google Scholar]
  22. Hoyos-ArbeláezJ. VázquezM. Contreras-CalderónJ. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review.Food Chem.20172211371138110.1016/j.foodchem.2016.11.017 27979102
    [Google Scholar]
  23. Fernández ArteagaJ. Ruiz MontoyaM. Palma LópezA. Alonso GarridoG. PintadoS. Rodríguez MelladoJ.M. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles.Molecules201217551265138
    [Google Scholar]
  24. ChevionS. RobertsM.A. ChevionM. The use of cyclic voltammetry for the evaluation of antioxidant capacity.Free Radic. Biol. Med.200028686087010.1016/S0891‑5849(00)00178‑7 10802216
    [Google Scholar]
  25. ZlatićG. ArapovićA. MartinovićI. Martinović BevandaA. BoškovićP. PrkićA. PautA. VukušićT. Antioxidant Capacity of Herzegovinian Wildflowers Evaluated by UV–VIS and Cyclic Voltammetry Analysis.Molecules20222717546610.3390/molecules27175466 36080233
    [Google Scholar]
  26. José Jara-PalaciosM. Luisa Escudero-GileteM. Miguel Hernández-HierroJ. HerediaF.J. HernanzD. Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.Talanta201716521121510.1016/j.talanta.2016.12.058 28153244
    [Google Scholar]
  27. MolyneuxP. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity.Songklanakarin J. Sci. Technol.2004262211219
    [Google Scholar]
  28. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  29. OrtizR. AntilénM. SpeiskyH. AliagaM.E. López-AlarcónC. BaughS. Application of a microplate-based ORAC-pyrogallol red assay for the estimation ofantioxidant capacity: First Action 2012.03.J. AOAC Int.20129561558156110.5740/jaoacint.CS2012_03 23451368
    [Google Scholar]
  30. MonkmanA.P. BloorD. StevensG.C. StevensJ.C.H. WilsonP. Electronic structure and charge transport mechanisms in polyaniline.Synth. Met.198929127728410.1016/0379‑6779(89)90307‑X
    [Google Scholar]
  31. VenkatesanR. CindrellaL. Methyl substituted, azine bridged poly thiophenes and their structure related surface characteristics.Synth. Met.201824615016310.1016/j.synthmet.2018.10.011
    [Google Scholar]
  32. BardA.J. FaulknerL.R. WhiteH.S. Electrochemical Methods: Fundamentals and Applications.Hoboken, New Jersey, U.S.John Wiley & Sons2022
    [Google Scholar]
  33. CossiM. RegaN. ScalmaniG. BaroneV. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model.J. Comput. Chem.200324666968110.1002/jcc.10189 12666158
    [Google Scholar]
  34. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. PeterssonG.A. NakatsujiH. Molecular modeling and synthesis of ethyl benzyl carbamates as possible ixodicide activity.Computat Chem.2018712418053
    [Google Scholar]
  35. RunnelsP.L. JosephJ.D. LogmanM.J. WightmanR.M. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes.Anal. Chem.199971142782278910.1021/ac981279t 10424168
    [Google Scholar]
  36. QuintinoM.S.M. YamashitaM. AngnesL. Voltammetric Studies and Determination of Levodopa and Carbidopa in Pharmaceutical Products.Electroanalysis200618765566110.1002/elan.200503445
    [Google Scholar]
  37. GhicaM.E. BrettC.M.A. Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors.J. Electroanal. Chem. (Lausanne)20096291-2354210.1016/j.jelechem.2009.01.019
    [Google Scholar]
  38. LavironE. RoullierL. DegrandC. A multilayer model for the study of space distributed redox modified electrodes.J. Electroanal. Chem. Interfacial Electrochem.19801121112310.1016/S0022‑0728(80)80003‑9
    [Google Scholar]
  39. YilmazÜ.T. CalikE. AkdulumB. YilmazH. Determination of carnosic acid in Rosmarinus officinalis L. using square wave voltammetry and electrochemical behavior.Yao Wu Shi Pin Fen Xi2018261300308 29389567
    [Google Scholar]
  40. MasoodZ. MuhammadH. TahiriI.A. Comparison of Different Electrochemical Methodologies for Electrode Reactions: A Case Study of Paracetamol.Electrochem202451576910.3390/electrochem5010004
    [Google Scholar]
  41. ZhangD. ChuL. LiuY. WangA. JiB. WuW. ZhouF. WeiY. ChengQ. CaiS. XieL. JiaG. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory.J. Agric. Food Chem.20115918102771028510.1021/jf201773q 21827150
    [Google Scholar]
  42. ZielinskaD. Szawara-NowakD. ZielinskiH. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment.J. Agric. Food Chem.200755156124613110.1021/jf071046f 17608502
    [Google Scholar]
  43. KilmartinP.A. ZouH. WaterhouseA.L. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics.J. Agric. Food Chem.20014941957196510.1021/jf001044u 11308353
    [Google Scholar]
  44. RoginskyV. BarsukovaT. HsuC.F. KilmartinP.A. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black teas.J. Agric. Food Chem.200351195798580210.1021/jf030086q 12952436
    [Google Scholar]
  45. NdhlalaA.R. MoyoM. Van StadenJ. Natural antioxidants: Fascinating or mythical biomolecules?Molecules201015106905693010.3390/molecules15106905 20938402
    [Google Scholar]
/content/journals/cac/10.2174/0115734110339878240920052420
Loading
/content/journals/cac/10.2174/0115734110339878240920052420
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): aniline; antioxidant; Chalcone; cyclic voltammetry; DFT; electrochemical measurement; polyaniline
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test