Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Silver nanoparticles possess distinctive characteristics, including chemical stability, high thermal and electrical conductivity, and linear optical properties, making them unique and fascinating. The rise of green synthesis methods for silver nanoparticles is garnering significant interest among researchers, surpassing traditional chemical and physical approaches due to the environmentally friendly, cost-effective, and convenient nature of synthesis. This approach stands as a viable alternative across various sectors, encompassing research, industry, and environmental safety initiatives.

Methods

permutatum was utilized in the synthesis of silver nanoparticles, followed by their characterization using ultraviolet-visible spectroscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction, energy dispersive X-ray analysis, and scanning electron microscopy. These nanoparticles are subsequiently employed for detecting methylene blue, formaldehyde, and hazardous mercury metal ions as well as photocatalytically degrading methylene blue.

Results

The silver nanoparticle synthesized was confirmed by a color change and the maximum peak of the SPR band was at 420 nm in the UV spectrum. The crystal has face-centered cubic (FCC) structure with an average size of 12.78 nm. The lichen extract contains polyphenolic groups which act as capping agents. synthesized silver nanoparticles were used to detect formaldehyde and hazardous Hg2+ ions separately. A color change was observed. The detection limit of Hg2+ was 600 μL. Likewise, silver nanoparticles were used to degrade methylene blue. The blue color of methylene blue disappeared. The efficiency of silver nanoparticles was found to be 72% in 4 hours and 87.82% in 24 hours.

Conclusion

has the potential to reduce Ag+1 to Ago and acts as a capping and stabilizing agent, it can be used to biosynthesize silver nanoparticles and can detect formaldehyde, and Hg2+ ions, in addition, it also degrades methylene blue photolytically.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110317043240815114217
2024-08-26
2025-12-24
Loading full text...

Full text loading...

References

  1. SanchezF. SobolevK. Nanotechnology in concrete – A review.Constr. Build. Mater.201024112060207110.1016/j.conbuildmat.2010.03.014
    [Google Scholar]
  2. SharmaV.K. YngardR.A. LinY. Silver nanoparticles: Green synthesis and their antimicrobial activities.Adv. Colloid Interface Sci.20091451-2839610.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  3. MakvandiP. IftekharS. PizzettiF. ZarepourA. ZareE.N. AshrafizadehM. AgarwalT. PadilV.V.T. MohammadinejadR. SillanpaaM. MaitiT.K. PeraleG. ZarrabiA. RossiF. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: A review.Environ. Chem. Lett.202119158361110.1007/s10311‑020‑01089‑4
    [Google Scholar]
  4. Abou El-NourK. M. M. EftaihaA. Al-WarthanA. AmmarR.A.A. Synthesis and applications of silver nanoparticles.Arabian J Chem20103313514010.1016/j.arabjc.2010.04.008
    [Google Scholar]
  5. BuzeaC. PachecoI.I. RobbieK. Nanomaterials and nanoparticles: Sources and toxicity.Biointerphases200724MR17MR7110.1116/1.2815690 20419892
    [Google Scholar]
  6. SilverS. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds.FEMS Microbiol. Rev.2003272-334135310.1016/S0168‑6445(03)00047‑0 12829274
    [Google Scholar]
  7. SudrikS.G. ChakiN.K. ChavanV.B. ChavanS.P. ChavanS.P. SonawaneH.R. VijayamohananK. Silver nanocluster redox-couple-promoted nonclassical electron transfer: An efficient electrochemical Wolff rearrangement of α-diazoketones.Chemistry200612385986410.1002/chem.200500696 16196073
    [Google Scholar]
  8. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H 22109657
    [Google Scholar]
  9. JainP.K. El-SayedI.H. El-SayedM.A. Au nanoparticles target cancer.Nano Today200721182910.1016/S1748‑0132(07)70016‑6
    [Google Scholar]
  10. SaxenaA. TripathiR.M. SinghR.P. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity.Digest J Nanomater Biostructures201052427432
    [Google Scholar]
  11. BhainsaK.C. D’SouzaS.F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus.Colloids Surf. B Biointerfaces200647216016410.1016/j.colsurfb.2005.11.026 16420977
    [Google Scholar]
  12. SinghalG. BhaveshR. KasariyaK. SharmaA.R. SinghR.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity.J. Nanopart. Res.20111372981298810.1007/s11051‑010‑0193‑y
    [Google Scholar]
  13. Nirmala GraceA. PandianK. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study.Colloids Surf. A Physicochem. Eng. Asp.20072971-3637010.1016/j.colsurfa.2006.10.024
    [Google Scholar]
  14. ChaloupkaK. MalamY. SeifalianA.M. Nanosilver as a new generation of nanoproduct in biomedical applications.Trends Biotechnol.2010281158058810.1016/j.tibtech.2010.07.006 20724010
    [Google Scholar]
  15. NairR. VargheseS.H. NairB.G. MaekawaT. YoshidaY. KumarD.S. Nanoparticulate material delivery to plants.Plant Sci.2010179315416310.1016/j.plantsci.2010.04.012
    [Google Scholar]
  16. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  17. AmirjaniA. BagheriM. HeydariM. HesarakiS. Label-free surface plasmon resonance detection of hydrogen peroxide; a bio-inspired approach.Sens. Actuators B Chem.201622737338210.1016/j.snb.2015.12.062
    [Google Scholar]
  18. ZargarB. HatamieA. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.Spectrochim. Acta A Mol. Biomol. Spectrosc.201310618518910.1016/j.saa.2013.01.003 23380146
    [Google Scholar]
  19. JuvéV. CardinalM.F. LombardiA. CrutA. MaioliP. Pérez-JusteJ. Liz-MarzánL.M. Del FattiN. ValléeF. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: Single gold nanorods.Nano Lett.20131352234224010.1021/nl400777y 23611370
    [Google Scholar]
  20. AustinL.A. MackeyM.A. DreadenE.C. El-SayedM.A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in diagnostics, therapy, and drug delivery.Arch. Toxicol.201488713911417
    [Google Scholar]
  21. LinkS. El-SayedM.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.Int. Rev. Phys. Chem.2000193409453
    [Google Scholar]
  22. ZhaoW. Structuring gold nanoparticles using DNA: Towards smart nanoassemblies and facile biosensors.2008Available From: https://macsphere.mcmaster.ca/handle/11375/16762
    [Google Scholar]
  23. SabelaM. BalmeS. BechelanyM. JanotJ.M. BisettyK. A review of gold and silver nanoparticle‐based colorimetric sensing assays.Adv. Eng. Mater.20171912170027010.1002/adem.201700270
    [Google Scholar]
  24. QinL. ZengG. LaiC. HuangD. XuP. ZhangC. ChengM. LiuX. LiuS. LiB. YiH. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing.Coord. Chem. Rev.201835913110.1016/j.ccr.2018.01.006
    [Google Scholar]
  25. AravindA. SebastianM. MathewB. Green silver nanoparticles as a multifunctional sensor for toxic Cd(II) ions.New J. Chem.20184218150221503110.1039/C8NJ03696A
    [Google Scholar]
  26. ArulmoorthyM. P. SugumarV. VigneshR. RathieshA. SrinivasanM. Green synthesis of silver nanoparticles using medicinal dune plant ipomoea pescaprae leaf extract.IJSIT201544384392
    [Google Scholar]
  27. BardA. J. ParsonsR. JordanJ. Standard Potentials in Aqueous SolutionNew York: Routledge2015
    [Google Scholar]
  28. AnupriyaS. ElangovanK. AravindR. MurugesanK. Synthesis of silver nanoparticles stabilized with phytochemicals and their application towards in vitro antioxidant and antibacterial activities.Int J Med Nanotechnol20163110
    [Google Scholar]
  29. SivakumarP. NethradeviC. RenganathanS. Synthesis of silver nanoparticles using Lantana camara fruit extract and its effect on pathogens.Asian J Pharmaceut Clin Res20125397101
    [Google Scholar]
  30. PhilipD. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201178132733110.1016/j.saa.2010.10.015 21030295
    [Google Scholar]
  31. ChenC.Y. Photocatalytic degradation of azo dye reactive orange 16 by TiO2.Water Air Soil Pollut.20092021-433534210.1007/s11270‑009‑9980‑4
    [Google Scholar]
  32. KrólikowskaA. KudelskiA. MichotaA. BukowskaJ. SERS studies on the structure of thioglycolic acid monolayers on silver and gold.Surf. Sci.2003532-53522723210.1016/S0039‑6028(03)00094‑3
    [Google Scholar]
  33. ZhaoG. StevensS.E. Jr Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion.Biometals1998111273210.1023/A:1009253223055 9450315
    [Google Scholar]
  34. LeeH.Y. LiZ. ChenK. HsuA.R. XuC. XieJ. SunS. ChenX. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles.J Nucl Med20084981371137910.2967/jnumed.108.051243 18632815
    [Google Scholar]
  35. DinL.B. MieR. SamsudinM.W. AhmadA. IbrahimN. Biomimetic synthesis of silver nanoparticles using the lichen Ramalina dumeticola and the antibacterial activity.Malaysian J. Anal. Sci.2015192369376
    [Google Scholar]
  36. AnandalakshmiK. VenugobalJ. RamasamyV. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity.Appl. Nanosci.20166339940810.1007/s13204‑015‑0449‑z
    [Google Scholar]
  37. JyotiK. BaunthiyalM. SinghA. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics.J Radiat Res Appl Sci20169321722710.1016/j.jrras.2015.10.002
    [Google Scholar]
  38. AoshimaH. HirataS. AyabeS. Antioxidative and anti-hydrogen peroxide activities of various herbal teas.Food Chem.2007103261762210.1016/j.foodchem.2006.08.032
    [Google Scholar]
  39. RomandM. RoubinM. DeloumeJ.P. ESCA studies of some copper and silver selenides.J. Electron Spectrosc. Relat. Phenom.197813322924210.1016/0368‑2048(78)85029‑4
    [Google Scholar]
  40. MaY. TaoL. BaiS. HuA. Green synthesis of ag nanoparticles for plasmon-assisted photocatalytic degradation of methylene blue.Catalysts20211112149910.3390/catal11121499
    [Google Scholar]
  41. KarthikL. KumarG. KirthiA.V. RahumanA.A. Bhaskara RaoK.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application.Bioprocess Biosyst. Eng.201437226126710.1007/s00449‑013‑0994‑3 23771163
    [Google Scholar]
  42. ProspositoP. BurrattiL. VendittiI. Silver nanoparticles as colorimetric sensors for water pollutants.Chemosensors2020822610.3390/chemosensors8020026
    [Google Scholar]
  43. BeckerR.O. Silver ions in the treatment of local infections.Met. Based Drugs199964-531131410.1155/MBD.1999.311 18475906
    [Google Scholar]
  44. YuanX. XiaoS. TaylorT.N. Lichen-like symbiosis 600 million years ago.Science200530857241017102010.1126/science.1111347 15890881
    [Google Scholar]
  45. ElixJ.A. WhittonA.A. SargentM.V. Recent progress in the chemistry of lichen substances.Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products.HeidelbergSpringer Link198410.1007/978‑3‑7091‑8717‑3_2
    [Google Scholar]
  46. BenattiM.N. Species of Parmotrema (Parmeliaceae, Ascomycota) in Parque Estadual da Cantareira, State of São Paulo, Brazil, II: Species with spots or with irregular spots.Hoehnea2014418110210.1590/S2236‑89062014000100008
    [Google Scholar]
  47. Thapa MagarG. ChaudharyS. Wild floristic diversity of Daman-Simbhanjyang Area, Makwanpur District, Central Nepal.Int. J. Appl. Sci. Biotechnol.202210211212310.3126/ijasbt.v10i2.46188
    [Google Scholar]
/content/journals/cac/10.2174/0115734110317043240815114217
Loading
/content/journals/cac/10.2174/0115734110317043240815114217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test