Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The Asteraceae family comprises the largest flowering plant species, which have also been proven to have medicinal value for various illnesses due to the presence of numerous volatile and non-volatile constituents.

Objective

The study aims to compare the volatile phytoconstiteunts presence in the essential oils of Asteraceae family plants including Roman Chamomile Oil (), German Chamomile Oil (), Davana Oil (), Wormwood Oil (), Armoise Oil (), Tansy Oil (), Yarrow Oil (), Tarragon Oil (), Tagetes Oil () and Immortelle Absolute Oil () as simultaneous estimation using the novel methods.

Methods

Roman chamomile, German chamomile, davana, wormwood, armoire, tansy, yarrow, tarragon, tagetes, and immortelle absolute oils were extracted by steam distillation from their respective Asteraceae species and carried out the gas chromatography analysis.

Results

The result was that GC-MS analysis of selected essential oils contains terpenes and terpenoids in major amounts. Among the detected volatile constituents in crucial oils Methyl Chavicol was found higher 75.63% in Tarragon Oil compared to other constituents followed Neryl acetate (60.25%) found in the immortelle absolute oil, Cis davanone (55.36%) was found in the davana oil, Ocimene (45.58%) in the tagetes oil, α-bisabololoxide B (45.26%) in the German chamomile oil, Beta thujone (50.65%) in the tansy oil, Alpha thujone (40.21%) in the wormwood oil and Camphor (38.65%) in the armoise oil. 1,8-Cineole, Alpha pinene, and Camphene were found in three oils (Wormwood oil, Armoise oil and Yarrow oil) among the selected oils.

Conclusion

Finally, we concluded that species from the same family (Asteraceae) were biologically synthesized with different volatile constituents. Hence, each essential oil has a unique biochemical fingerprint. These findings will help the food industry in relation to natural flavoring.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110316947240813054000
2024-08-26
2025-12-14
Loading full text...

Full text loading...

References

  1. RolnikA. OlasB. The plants of the asteraceae family as agents in the protection of human health.Int. J. Mol. Sci.2021226300910.3390/ijms22063009 33809449
    [Google Scholar]
  2. SinghA. PandeyS. SrivastavaR.P. DevkotaH.P. SinghL. SaxenaG. SaxenaG. Helianthus annuus L.: Traditional uses, phytochemistry, and pharmacological activities.Medicinal Plants of the Asteraceae Family: Traditional Uses, Phytochemistry and Pharmacological ActivitiesSpringer: Singapore20222197212
    [Google Scholar]
  3. SharmaS.K. AlamA. Ethnomedicinal importance of common weeds of the family asteraceae in the tribal belt of.MAPRajasthan, India202323762
    [Google Scholar]
  4. Abd-AllaH. The potential use of some members belong to Apiaceae and asteraceae plant family as immune boosters in livestock production.Egypt. J. Anim. Prod.2022594455510.21608/ejap.2022.244951
    [Google Scholar]
  5. AwuchiC.G. MoryaS. Herbs of asteraceae family: Nutritional profile, bioactive compounds, and potentials in therapeutics.Wiley Online Library202310.1002/9781119793007.ch2
    [Google Scholar]
  6. SinghS. SinghB. SurmalO. BhatM.N. SinghB. MusarellaC.M. Fragmented forest patches in the Indian Himalayas preserve unique components of biodiversity: Investigation of the floristic composition and phytoclimate of the unexplored bani valley.Sustainability20211311606310.3390/su13116063
    [Google Scholar]
  7. García-HerreraP. Sánchez-MataM.C. CámaraM. Fernández-RuizV. Díez-MarquésC. MolinaM. TardíoJ. Nutrient composition of six wild edible mediterranean asteraceae plants of dietary interest.J. Food Compos. Anal.201434216317010.1016/j.jfca.2014.02.009
    [Google Scholar]
  8. JamilS. DastagirG. FoudahA.I. AlqarniM.H. YusufogluH.S. AlkreathyH.M. ErtürkÖ. ShahM.A.R. KhanR.A. Carduus edelbergii Rech. f. Mediated fabrication of gold nanoparticles; characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs.Molecules20222719666910.3390/molecules27196669 36235206
    [Google Scholar]
  9. Soto-BlancoB. Herbal glycosides in healthcare.Herbal Biomolecules in Healthcare Applications202223928210.1016/B978‑0‑323‑85852‑6.00021‑4
    [Google Scholar]
  10. MouffoukC. MouffoukS. MouffoukS. HabaH. Traditional use, phytochemistry and pharmacological properties of the genus onopordum.Curr. Chem. Biol.202317212413910.2174/2212796817666230102092008
    [Google Scholar]
  11. Abd-El-AzizN.M. HifnawyM.S. LotfyR.A. YounisI.Y. LC/MS/MS and GC/MS/MS metabolic profiling of leontodon hispidulus, in vitro and in silico anticancer activity evaluation targeting hexokinase 2 enzyme.Sci. Rep.2024141687210.1038/s41598‑024‑57288‑4 38519553
    [Google Scholar]
  12. KültürŞ. GürdalB. SariA. Meli̇koğluG. Traditional herbal remedies used in kidney diseases in turkey: An overview.Turk. J. Bot.202145426928710.3906/bot‑2011‑32
    [Google Scholar]
  13. Al-SnafiA.E. Constituents and pharmacology of onopordum acanthium.IOSR J. Pharm.202010371410.9790/3013‑0703010720
    [Google Scholar]
  14. GarsiyaE.R. KonovalovD.A. ShamilovA.A. GlushkoM.P. OrynbasarovaK.K. Traditional medicine plant, onopordum acanthium L.(Asteraceae): Chemical composition and pharmacological research.Plants2019824010.3390/plants8020040 30759795
    [Google Scholar]
  15. EssaidiI. DhenN. LassouedG. KoukiR. HaoualaF. AlhudhaibiA.M. AlrudayniH.A. Dridi AlmohandesB. Onopordum nervosum ssp. platylepis flowers as a promising source of antioxidant and clotting milk agents: Behavior of spontaneous and cultivated plants under different drying methodologies.Processes20231110296210.3390/pr11102962
    [Google Scholar]
  16. BaştürkA. PekerS. Antioxidant Capacity, Fatty Acid Profile and Volatile Components of the Onopordum Anatolicum and Onopordum Heteracanthum Species Seeds Grown in Van, Turkey.JIST202111428102822
    [Google Scholar]
  17. GürdalB. Traditional uses of turkish asteraceae species.Medicinal and Aromatic Plants of Turkey.Cham: Springer International Publishing202328330510.1007/978‑3‑031‑43312‑2_13
    [Google Scholar]
  18. AlperM. ÖzayC. GüneşH. MammadovR. Assessment of antioxidant and cytotoxic activities and identification of phenolic compounds of centaurea solstitialis and urospermum picroides from turkey.Braz. Arch. Biol. Technol.202164e2119053010.1590/1678‑4324‑2021190530
    [Google Scholar]
  19. CaliskanU.K. Ed.; Medicinal Plants of Turkey.CRC Press202310.1201/9781003146971
    [Google Scholar]
  20. BrancoS. IrimiaR.E. MontesinosD. The introduction of an invasive weed was not followed by the introduction of ethnobotanical knowledge: A review on the ethnobotany of Centaurea solstitialis L. (Asteraceae).PeerJ202311e1548910.7717/peerj.15489 37304862
    [Google Scholar]
  21. AhmadS. SabaS. HafizM.A. Phytochemical analysis, antimicrobial, antioxidant and enzyme inhibitory activities of ethanolic extract of Centaureasolstitialis L. and its different fractions.Indian J. Exp. Biol.20225806396403
    [Google Scholar]
  22. TauchenJ. Natural products and their (semi-) synthetic forms in the treatment of migraine: History and current status.Curr. Med. Chem.202027233784380810.2174/0929867326666190125155947 30686246
    [Google Scholar]
  23. UngererJ.T. Grow, gather, heal: Unleashing the power of feverfew: an in-depth exploration of feverfew’s history, folk and traditional uses, medicinal benefits, and cultivating your own at home.John T. Ungerer2024
    [Google Scholar]
  24. JahromiB. PirvulescuI. CandidoK.D. KnezevicN.N. Herbal medicine for pain management: Efficacy and drug interactions.Pharmaceutics202113225110.3390/pharmaceutics13020251 33670393
    [Google Scholar]
  25. SangleC.K. Use Of herbal medication & home remedies in the management of migraine: A comprehensive review.Int. J. Pharma Sci.20231111
    [Google Scholar]
  26. FerraraL. Nutrition and phytotherapy: A winning combination against headache.International Journal of Medical Reviews20196161310.29252/IJMR‑060102
    [Google Scholar]
  27. KumarN. AshaqM. Safety and toxicity of botanical medicines: A critical appraisal.Int. J. All Res. Educ. Sci. Methods.2021924556211
    [Google Scholar]
  28. KopustinskieneD.M. BernatonyteU. MasliiY. HerbinaN. BernatonieneJ. Natural herbal non-opioid topical pain relievers—comparison with traditional therapy.Pharmaceutics20221412264810.3390/pharmaceutics14122648 36559142
    [Google Scholar]
  29. SahA. NaseefP.P. KuruniyanM.S. JainG.K. ZakirF. AggarwalG. A comprehensive study of therapeutic applications of chamomile.Pharmaceuticals20221510128410.3390/ph15101284 36297396
    [Google Scholar]
  30. ParveenA. PerveenS. NazF. AhmadM. KhalidM. Chamomile.InEssentials of Medicinal and Aromatic Crops.ChamSpringer International Publishing202310091040
    [Google Scholar]
  31. ChauhanR. SinghS. KumarV. KumarA. KumariA. RathoreS. KumarR. SinghS. A comprehensive review on biology, genetic improvement, agro and process technology of german chamomile (Matricaria chamomilla L.).Plants20211112910.3390/plants11010029 35009033
    [Google Scholar]
  32. WaliA.F. JabnounS. RazmpoorM. NajeebF. ShalabiH. AkbarI. Account of some important edible medicinal plants and their socio-economic importance. Edible Plants in Health and Diseases; Cultural,Practical and Economic Value2022Vol. 1325367
    [Google Scholar]
  33. DurgadeviM. NarayanapurV.B. VishwanathY.C. Laxminarayan HegdeD.B. Gandolkar, K Davana a potential under exploited aromatic crop of south India: A review.J. Pharm. Innov.2022112
    [Google Scholar]
  34. JhaV. KadamP. JainT. BhargavaA. MarickA. SaiyaB. MaitiS. PandyaS. PatelR. JadhavN. Investigation of physico-chemical properties and evaluation of the biological potential of essential oil extracted from artemisia pallens. J. Umm Al-Qura Univ.Appl. Sci.20239449450710.1007/s43994‑023‑00059‑0
    [Google Scholar]
  35. PatilD.N. KeshammaE. PrathibhaK.Y. PandyaJ.B. Pharmacognosy: A science of natural products.Book Saga Publications2022
    [Google Scholar]
  36. RajamaniK. NalinaL. HegdeL. Medicinal and aromatic crops.AgriMoon2019195
    [Google Scholar]
  37. WangL. LiT. XinB. LiuY. ZhangF. Preparation and characterization of wormwood-oil-contained microcapsules.J. Microencapsul.202037432433110.1080/02652048.2020.1749320 32241190
    [Google Scholar]
  38. GhalemBR Essential oils as antimicrobial agents against some important plant pathogenic bacteria and fungi.Plant-Microbe Interaction: An Approach to Sustainable Agriculture.201627129610.1007/978‑981‑10‑2854‑0_13
    [Google Scholar]
  39. JuJ. XieY. GuoY. ChengY. QianH. YaoW. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food.Crit. Rev. Food Sci. Nutr.201959203281329210.1080/10408398.2018.1488159 29902072
    [Google Scholar]
  40. LeeS.S. KimD.H. ParadhiptaD.H.V. LeeH.J. YoonH. JooY.H. AdesoganA.T. KimS.C. Effects of wormwood (Artemisia montana) essential oils on digestibility, fermentation indices, and microbial diversity in the rumen.Microorganisms2020810160510.3390/microorganisms8101605 33081073
    [Google Scholar]
  41. RazaviR. AmiriM. AlshamsiH.A. EslaminejadT. Salavati-NiasariM. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking.Arab. J. Chem.202114910332310.1016/j.arabjc.2021.103323
    [Google Scholar]
  42. Nurzyńska-WierdakR. SałataA. KniaziewiczM. Tansy (Tanacetum vulgare L.)—A wild-growing aromatic medicinal plant with a variable essential oil composition.Agronomy202212227710.3390/agronomy12020277
    [Google Scholar]
  43. MamatkulovZ.U. KayumovaG.G. Pharmaceutical properties of flores tanaceti.MMMS20232104344
    [Google Scholar]
  44. IjazF. NawazH. HanifM.A. FerreiraP.M. Yarrow.Medicinal Plants of South Asia.Elsevier202068569710.1016/B978‑0‑08‑102659‑5.00050‑1
    [Google Scholar]
  45. Farasati FarB. BehzadG. KhaliliH. Achillea millefolium: Mechanism of action, pharmacokinetic, clinical drug-drug interactions and tolerability.Heliyon2023912e2284110.1016/j.heliyon.2023.e22841 38076118
    [Google Scholar]
  46. AzizkhaniM. Jafari KiasariF. TooryanF. ShahaviM.H. PartoviR. Preparation and evaluation of food-grade nanoemulsion of tarragon (Artemisia dracunculus L.) essential oil: Antioxidant and antibacterial properties.J. Food Sci. Technol.20215841341134810.1007/s13197‑020‑04645‑6 33746262
    [Google Scholar]
  47. BehbahaniB.A. ShahidiF. YazdiF.T. MortazaviS.A. MohebbiM. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil.J. Food Meas. Charact.201711284786310.1007/s11694‑016‑9456‑3
    [Google Scholar]
  48. Alizadeh BehbahaniB. Tabatabaei YazdiF. ShahidiF. MortazaviS.A. MohebbiM. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil.Microb. Pathog.2017105375010.1016/j.micpath.2017.02.013 28189730
    [Google Scholar]
  49. BakhtiarizadeM. SouriM.K. Beneficial effects of rosemary, thyme and tarragon essential oils on postharvest decay of valencia oranges.Chem. Biol. Technol. Agric.201961910.1186/s40538‑019‑0146‑3
    [Google Scholar]
  50. HuangX. GaoW. YunX. QingZ. ZengJ. Effect of natural antioxidants from marigolds (Tagetes erecta L.) on the oxidative stability of soybean oil.Molecules2022279286510.3390/molecules27092865 35566214
    [Google Scholar]
  51. SinghY. GuptaA. KannojiaP. Tagetes erecta (Marigold) A review on its phytochemical and medicinal properties.CURRENT MEDICAL AND DRUG RESEARCH2020411610.53517/CMDR.2581‑5008.412020201
    [Google Scholar]
  52. GuptaY.C. PanwarS. BanyalN. ThakurN. DhimanM.R. Marigold.InFloriculture and Ornamental Plants.SingaporeSpringer Nature Singapore2022123
    [Google Scholar]
  53. SharmaG. RajhansaK.C. SharmaP. SinghA. SharmaA. SahuM.K. SharmaR. PandeyA.K. Marigold (Tagetes spp.): A diverse crop with multipurpose value for health and environment: A review.Agric. Rev.2022(Of)10.18805/ag.R‑2475
    [Google Scholar]
  54. ErbaşS. ErdoğanÜ. MutlucanM. The scent compounds of immortelle ecotypes (Helichrysum italicum (Roth) G. Don.) grown in türkiye and its new products (Absolute and Concrete).S. Afr. J. Bot.202315830131110.1016/j.sajb.2023.05.029
    [Google Scholar]
  55. GenčićM.S. AksićJ.M. Živković StošićM.Z. RandjelovićP.J. StojanovićN.M. Stojanović-RadićZ.Z. RadulovićN.S. Linking the antimicrobial and anti-inflammatory effects of immortelle essential oil with its chemical composition The interplay between the major and minor constituents.Food Chem. Toxicol.202115811266610.1016/j.fct.2021.112666 34762977
    [Google Scholar]
  56. ŘebíčkováK. BajerT. ŠilhaD. VenturaK. BajerováP. Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L.Plant Foods Hum. Nutr.202075449550410.1007/s11130‑020‑00834‑y 32710382
    [Google Scholar]
  57. AkdağA. ÖztürkE. Distillation methods of essential oils.Selçuk Üniversitesi Fen Fakültesi Fen Dergisi.20194512231
    [Google Scholar]
  58. KayaD.A. GhicaM.V. DănilăE. ÖztürkŞ. TürkmenM. Albu KayaM.G. Dinu-PîrvuC.E. Selection of optimal operating conditions for extraction of Myrtus Communis L. Essential oil by the steam distillation method.Molecules20202510239910.3390/molecules25102399 32455788
    [Google Scholar]
  59. HuY. QiL. FengS. BassiA. XuC.C. Comparative studies on liquefaction of low-lipid microalgae into bio-crude oil using varying reaction media.Fuel201923824024710.1016/j.fuel.2018.10.124
    [Google Scholar]
  60. GnanaselvanS. YadavS.A. ManoharanS.P. Structure-based virtual screening of anti-breast cancer compounds from artemisia absinthium—insights through molecular docking, pharmacokinetics, and molecular dynamic simulations.J. Biomol. Struct. Dyn.20244263267328510.1080/07391102.2023.2212805. 37194295
    [Google Scholar]
  61. OliveiraS.D.D.S. De OliveiraE. Silva, A.M.; Blank, A.F.; Nogueira, P.C.D.L.; Nizio, D.A.D.C.; Almeida-Pereira, C.S.; Pereira, R.O.; Menezes-Sá, T.S.A.; Santana, M.H.D.S.; Arrigoni-Blank, M.D.F.; Arrigoni-Blank, M.D. Radical scavenging activity of the essential oils from Croton grewioides Baill accessions and the major compounds eugenol, methyl eugenol and methyl chavicol.J. Essent. Oil Res.20213319410310.1080/10412905.2020.1779139
    [Google Scholar]
  62. AshmawyA. MostafaN. EldahshanO. GC/MS analysis and molecular profiling of lemon volatile oil against breast cancer.J. Essent. Oil-Bear. Plants201922490391610.1080/0972060X.2019.1667877
    [Google Scholar]
  63. SinghS. BhattD. SinghM.K. SundaresanV. TandonS. PadaliaR.C. BawankuleD.U. VermaR.S. New insights into the chemical composition, pro‐inflammatory cytokine inhibition profile of davana (Artemisia pallens Wall. ex DC.) essential oil and cis‐davanone in primary macrophage cells.Chem. Biodivers.20211811e210053110.1002/cbdv.202100531 34669255
    [Google Scholar]
  64. JoshiR.K. GC-MS analysis of the volatile constituents of Orthosiphon pallidus Royle, ex Benth.Nat. Prod. Res.202034344144410.1080/14786419.2018.1534849 30600707
    [Google Scholar]
  65. SalamonI. IbraliuA. KryvtsovaM. Essential oil content and composition of the chamomile inflorescences (Matricaria recutita L.) belonging to central albania.Horticulturae2023914710.3390/horticulturae9010047
    [Google Scholar]
  66. AL-EnaweyAW. SaadedinSM. Al-KhaldiSA. Antifungal activity, GC-MS analysis of thuja occidentalis essential oil with gene expression.Iraqi J. Biotechnol2020319
    [Google Scholar]
  67. Ying-JiaoL. Li-JuanX. LanX. Li-MinG. Ta-SiL. Nai-HongC. Authentication of two different chemical types of cinnamomum camphora leaves by microscopic technique with GC-MS and GC analysis.Pharm. Chem. J.202054215416110.1007/s11094‑020‑02173‑3
    [Google Scholar]
  68. Sobreira Dantas Nóbrega de FiguêiredoF.R. MonteiroÁ.B. Alencar de MenezesI.R. SalesV.S. Petícia do NascimentoE. Kelly de Souza RodriguesC. Bitu PrimoA.J. Paulo da CruzL. AmaroÉ.N. de Araújo DelmondesG. Leite de Oliveira Sobreira NóbregaJ.P. Pereira LopesM.J. Martins da CostaJ.G. Bezerra FelipeC.F. KerntopfM.R. Effects of the hyptis martiusii benth. leaf essential oil and 1,8-cineole (eucalyptol) on the central nervous system of mice.Food Chem. Toxicol.201913311080210.1016/j.fct.2019.110802 31493462
    [Google Scholar]
  69. FreitasP.R. de AraújoA.C.J. dos Santos BarbosaC.R. MunizD.F. da SilvaA.C.A. RochaJ.E. de Morais Oliveira-TintinoC.D. Ribeiro-FilhoJ. da SilvaL.E. ConfortinC. do AmaralW. DeschampsC. Barbosa-FilhoJ.M. de LimaN.T.R. TintinoS.R. Melo CoutinhoH.D. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of baccharis reticulata (ruiz & pav.) pers. and α-pinene.Ind. Crops Prod.202014511210610.1016/j.indcrop.2020.112106
    [Google Scholar]
  70. HachlafiN.E.L. AannizT. MenyiyN.E. BaabouaA.E. OmariN.E. BalahbibA. ShariatiM.A. ZenginG. Fikri-BenbrahimK. BouyahyaA. In vitro and in vivo biological investigations of camphene and its mechanism insights: A review.Food Rev. Int.20233941799182610.1080/87559129.2021.1936007
    [Google Scholar]
  71. ChintalchereJ.M. DarM.A. RautK.D. PanditR.S. Bioefficacy of lemongrass and tea tree essential oils against house fly, Musca domestica.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202191230731810.1007/s40011‑020‑01220‑z 33619421
    [Google Scholar]
  72. ChintalchereJ.M. DarM.A. ShahaC. PanditR.S. Impact of essential oils on musca domestica larvae: Oxidative stress and antioxidant responses.Int. J. Trop. Insect Sci.202141182183010.1007/s42690‑020‑00272‑y
    [Google Scholar]
  73. ChintalchereJ.M. DarM.A. PanditR.S. Biocontrol efficacy of bay essential oil against housefly, musca domestica (Diptera: Muscidae).J. Basic Appl. Zool.20208112
    [Google Scholar]
/content/journals/cac/10.2174/0115734110316947240813054000
Loading
/content/journals/cac/10.2174/0115734110316947240813054000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test