Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Aims

This study investigates the composition of tattoo pigments to ensure their safe application in tattoo art, evaluating the viability of UV-Vis and FT-IR spectroscopy, coupled with chemometrics, for predicting pigment contents in tattoo inks.

Background

Analyzing pigments in tattoo inks poses challenges in maintaining quality. This study addresses the difficulties by proposing the use of UV-Vis and FT-IR spectroscopy, along with chemometrics, as potential solutions for effective monitoring.

Objective

The aim of this study was to determine the content of red (PR) 170/254 and pigment blue (PB) 15:3 in tattoo inks from diverse suppliers and examine the distinct chemical structures and existing impurities in the samples using UV-Vis and FT-IR spectroscopy, employing regression models for data analysis.

Methods

We collected UV-Vis and FT-IR spectra from the tattoo ink samples and utilized regression models for data analysis. We assessed correlations across spectrum areas, emphasizing coefficients of determination for cross-validation. Subsequently, we compare the results obtained from both spectroscopic methods in terms of pigment identity and evaluated the suitability of UV-Vis spectroscopy for analyzing changes in pigment concentration and structural evolution. Finally, we employed chemometric modeling to enhance predictions of FT-IR parameters, particularly in the functional group and fingerprint region of the spectra.

Results

Significant correlations were observed across both UV-Vis and FT-IR spectrum areas, with coefficients of determination for cross-validation exceeding 0.7 for most parameters. Both spectroscopic methods yielded nearly identical results regarding pigment identity. UV-Vis spectroscopy proved to be a suitable method for analyzing changes in pigment concentration and structural evolution. Chemometric modeling enhanced predictions of FT-IR parameters, particularly in the functional group and fingerprint region of the spectra.

Conclusion

The study underscores the significance of utilizing UV-Vis and FT-IR wavelengths from various suppliers to determine pigment structures in tattoo inks. The consistent and comparable results from both spectroscopic methods highlight their efficacy in characterizing pigments. UV-Vis spectroscopy, in particular, emerged as a valuable tool for assessing changes in pigment concentration and structural evolution. The improved predictions through chemometric modeling further emphasize the utility of these analytical approaches in ensuring the safe use of tattoo inks in the art of tattooing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110316443240725051037
2025-08-01
2025-12-24
Loading full text...

Full text loading...

/deliver/fulltext/cac/21/8/CAC-21-8-08.html?itemId=/content/journals/cac/10.2174/0115734110316443240725051037&mimeType=html&fmt=ahah

References

  1. AndreouE. HatziantoniouS. RallisE. KefalaV. Safety of tattoos and permanent make up (PMU) colorants.Cosmetics2021824710.3390/cosmetics8020047
    [Google Scholar]
  2. LauxP. TralauT. TentschertJ. BlumeA. DahoukS.A. BäumlerW. BernsteinE. BoccaB. AlimontiA. ColebrookH. de CuyperC. DähneL. HauriU. HowardP.C. JanssenP. KatzL. KlitzmanB. KlugerN. KrutakL. PlatzekT. Scott-LangV. SerupJ. TeubnerW. SchreiverI. WilknißE. LuchA. A medical-toxicological view of tattooing.Lancet20163871001639540210.1016/S0140‑6736(15)60215‑X 26211826
    [Google Scholar]
  3. BaumgartnerA. GautschS. Hygienic-microbiological quality of tattoo- and permanent make-up colours.J. Verbraucherschutz Lebensmsicherh.20116331932510.1007/s00003‑010‑0636‑5
    [Google Scholar]
  4. Pérez-CotaposS. Tattooing and scarring: Technique and complications.Dermatologic complications with body art.Semantic Scholar2021
    [Google Scholar]
  5. DieckmannR. BooneI. BrockmannS.O. HammerlJ.A. Kolb-MäurerA. GoebelerM. LuchA. DahoukS.A. The risk of bacterial infection after tattooing.Dtsch. Arztebl. Int.20161134066567110.3238/arztebl.2016.0665 27788747
    [Google Scholar]
  6. Tattoo inks: Minimum requirements and test methods. Suzan, Fiack, Ed.; BfR202110.17590/20211021‑115214
    [Google Scholar]
  7. ClarkM. Ed.; Handbook of textile and industrial dyeing: principles, processes and types of dyes.Elsevier2011
    [Google Scholar]
  8. TimkoA.L. MillerC.H. JohnsonF.B. RossE. In vitro quantitative chemical analysis of tattoo pigments.Arch. Dermatol.20011372143147 11176685
    [Google Scholar]
  9. MontagnerC. BacciM. BracciS. FreemanR. PicolloM. Library of UV–Vis–NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.Spectrochim. Acta A Mol. Biomol. Spectrosc.20117951669168010.1016/j.saa.2011.05.033 21715217
    [Google Scholar]
  10. KaradagliS.S. CanseverI. ArmaganG. SogutO. Are some metals in tattoo inks harmful to health? An analytical approach.Chem. Res. Toxicol.202336110411110.1021/acs.chemrestox.2c00323 36584178
    [Google Scholar]
  11. YakesB.J. MichaelT.J. Perez-GonzalezM. HarpB.P. Investigation of tattoo pigments by raman spectroscopy.J. Raman Spectrosc.201748573674310.1002/jrs.5095
    [Google Scholar]
  12. LiuG.L. KazarianS.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging.Analyst202214791777179710.1039/D2AN00005A 35388386
    [Google Scholar]
  13. ArlM. NogueiraD.J. Schveitzer KöerichJ. Mottim JustinoN. Schulz VicentiniD. Gerson MatiasW. Tattoo inks: Characterization and in vivo and in vitro toxicological evaluation.J. Hazard. Mater.201936454856110.1016/j.jhazmat.2018.10.072 30388639
    [Google Scholar]
  14. RosiF. CartechiniL. SaliD. MilianiC. Recent trends in the application of fourier transform infrared (FT-IR) spectroscopy in heritage science: From micro- to non-invasive FT-IR.Physical Sciences Reviews20194112018000610.1515/psr‑2018‑0006
    [Google Scholar]
  15. MirandaM.D. Forensic analysis of tattoos and tattoo inks.Crc Press2015Sep1010.1201/b18938
    [Google Scholar]
  16. SchreiverI. HutzlerC. AndreeS. LauxP. LuchA. Identification and hazard prediction of tattoo pigments by means of pyrolysis—gas chromatography/mass spectrometry.Arch. Toxicol.20169071639165010.1007/s00204‑016‑1739‑2 27209489
    [Google Scholar]
  17. KharbachM. Alaoui MansouriM. TaabouzM. YuH. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches.Foods20231214275310.3390/foods12142753 37509845
    [Google Scholar]
  18. MiramontC. JourdesM. TeissedreP.L. Development of UV-vis and FTIR partial least squares models: Comparison and combination of two spectroscopy techniques with chemometrics for polyphenols quantification in red wine.OENO One202054477979210.20870/oeno‑one.2020.54.4.3731
    [Google Scholar]
  19. GiulbudagianM. SchreiverI. SinghA.V. LauxP. LuchA. Safety of tattoos and permanent make-up: A regulatory view.Arch. Toxicol.202094235736910.1007/s00204‑020‑02655‑z 32030457
    [Google Scholar]
  20. Tattoo inks and permanent make-upAvailable from: https://www.industrialchemicals.gov.au/consumers-and-community/tattoo-and-permanent-make-pmu-inks
  21. AcademyF.T. Everything you need to know about tattoo ink bans.Available from: https://www.floridatattooacademy.com/tattoo-ink-bans/
  22. TestNo. 105: Water Solubility, OECD Guidelines for the Testing of Chemicals.ParisOECD Publishing1995
    [Google Scholar]
  23. MabasaX.E. MathomuL.M. MadalaN.E. MusieE.M. SigidiM.T. Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the momordica balsamina leaf extract.Biochem. Res. Int.2021202111210.1155/2021/2854217 34621548
    [Google Scholar]
  24. MengtingZ. KurniawanT.A. YanpingY. AvtarR. OthmanM.H.D. 2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation.Mater. Sci. Eng. C202010811042010.1016/j.msec.2019.110420 31924000
    [Google Scholar]
  25. DomeniciV. AncoraD. CifelliM. SeraniA. VeraciniC.A. ZandomeneghiM. Extraction of pigment information from near-UV vis absorption spectra of extra virgin olive oils.J. Agric. Food Chem.201462389317932510.1021/jf503818k 25178056
    [Google Scholar]
  26. FestaG. ScatignoC. ArmettaF. SaladinoM.L. CiaramitaroV. NardoV.M. PonterioR.C. Chemometric tools to point out benchmarks and chromophores in pigments through spectroscopic data analyses.Molecules202127116310.3390/molecules27010163 35011394
    [Google Scholar]
  27. IvosevG. BurtonL. BonnerR. Dimensionality reduction and visualization in principal component analysis.Anal. Chem.200880134933494410.1021/ac800110w 18537272
    [Google Scholar]
  28. DavidC.C. SingamE.R.A. JacobsD.J. JED: A java essential dynamics program for comparative analysis of protein trajectories.BMC Bioinformatics201718127110.1186/s12859‑017‑1676‑y 28545397
    [Google Scholar]
  29. Al‐KandariNM JolliffeIT Variable selection and interpretation in correlation principal components.Environmetrics200516665967210.1002/env.728
    [Google Scholar]
  30. BroR. SmildeA.K. Principal component analysis.Anal. Methods2014692812283110.1039/C3AY41907J
    [Google Scholar]
  31. Ramos-EscuderoF. González-MiretM.L. Viñas-OspinoA. Ramos EscuderoM. Quality, stability, carotenoids and chromatic parameters of commercial sacha inchi oil originating from peruvian cultivars.J. Food Sci. Technol.201956114901491010.1007/s13197‑019‑03960‑x 31741514
    [Google Scholar]
  32. BreretonR.G. Principal components analysis with several objects and variables.J. Chemometr.2023374e340810.1002/cem.3408
    [Google Scholar]
  33. UncuO. OzenB. TokatliF. Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils.Talanta2019201657310.1016/j.talanta.2019.03.116 31122462
    [Google Scholar]
  34. JothibasM. ManoharanC. Johnson JeyakumarS. PraveenP. Joseph PanneerdossI. Photocatalytic activity of spray deposited ZrO2 nano-thin films on methylene blue decolouration.J. Mater. Sci. Mater. Electron.20162765851585910.1007/s10854‑016‑4502‑9
    [Google Scholar]
  35. GerwertK KöttingC. Fourier transform infrared (FTIR) spectroscopy.eLS201010.1002/9780470015902.a0003112
    [Google Scholar]
  36. ButterfieldJ.L. Antiphotocarcinogenic Intradermal Tattoos. Doctoral dissertation, University of Colorado at Boulder
    [Google Scholar]
  37. BaconJ.R. ButlerO.T. CairnsW.R.L. CavouraO. CookJ.M. DavidsonC.M. Mertz-KrausR. Atomic spectrometry update a review of advances in environmental analysis.J. Anal. At. Spectrom.2024391116510.1039/D3JA90044D
    [Google Scholar]
  38. HofkoB. AlaviM.Z. GrotheH. JonesD. HarveyJ. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders.Mater. Struct.201750318710.1617/s11527‑017‑1059‑x
    [Google Scholar]
  39. SahaD. SenthilkumarT. SharmaS. SinghC.B. ManickavasaganA. Application of near-infrared hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of protein content in single chickpea seed.J. Food Compos. Anal.202311510493810.1016/j.jfca.2022.104938
    [Google Scholar]
  40. GauglitzG. Ultraviolet and visible spectroscopy.Handb. Anal. Tech.20011341946310.1002/9783527618323.ch16
    [Google Scholar]
  41. SabbatiniL. van der WerfI.D. Eds.; Chemical analysis in cultural heritage.Walter de Gruyter GmbH & Co KG202010.1515/9783110457537
    [Google Scholar]
  42. VolkovV.V. ChelliR. RighiniR. PerryC.C. Indigo chromophores and pigments: Structure and dynamics.Dyes Pigments202017210776110.1016/j.dyepig.2019.107761
    [Google Scholar]
  43. KanchanaS. KaviyaT. RajkumarP. KumarM.D. ElangovanN. SowrirajanS. Computational investigation of solvent interaction (TD-DFT, MEP, HOMO-LUMO), wavefunction studies and molecular docking studies of 3-(1-(3-(5-((1-methylpiperidin-4-yl)methoxy)pyrimidin-2-yl)benzyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile.Chemical Physics Impact2023710026310.1016/j.chphi.2023.100263
    [Google Scholar]
  44. OfemM.I. AyiC.A. LouisH. GberT.E. AyiA.A. Influence of anionic species on the molecular structure, nature of bonding, reactivity, and stability of ionic liquids-based on 1-butyl-3-methylimidazolium.J. Mol. Liq.202338712265710.1016/j.molliq.2023.122657
    [Google Scholar]
  45. NguyenT.V. Nguyen TriP. NguyenT.D. El AidaniR. TrinhV.T. DeckerC. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings.Polym. Degrad. Stabil.2016128657610.1016/j.polymdegradstab.2016.03.002
    [Google Scholar]
  46. GroeneveldI. KanelliM. ArieseF. van BommelM.R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate an overview.Dyes Pigments202321011099910.1016/j.dyepig.2022.110999
    [Google Scholar]
  47. FraserT.R. RossK.E. AlexanderU. LenehanC.E. Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: A systematic review.J. Expo. Sci. Environ. Epidemiol.202232334335510.1038/s41370‑021‑00364‑y 34274958
    [Google Scholar]
  48. HauriU. HohlC. Photostability and breakdown products of pigments currently used in tattoo inks.Curr. Probl. Dermatol.20154816416910.1159/000369225 25833639
    [Google Scholar]
  49. BeuteT.C. MillerC.H. TimkoA.L. RossE.V. In vitro spectral analysis of tattoo pigments.Dermatol. Surg.2008344508515 18248489
    [Google Scholar]
  50. HeringH. ZoschkeC. KönigF. KühnM. LuchA. SchreiverI. Phototoxic versus photoprotective effects of tattoo pigments in reconstructed human skin models: In vitro phototoxicity testing of tattoo pigments: 3D versus 2D.Toxicology202146015287210.1016/j.tox.2021.152872 34303732
    [Google Scholar]
  51. DieboldM De BackerS NiedenzuPM HesterBR Vanhecke, FA Pigments, Extenders, and Particles in Surface Coatings and Plastics: Fundamentals and Applications to Coatings, Plastics and Paper Laminate FormulationSpringer2022460152872
    [Google Scholar]
  52. HaddadR.E. GazeauS. PécautJ. MarchonJ.C. MedforthC.J. ShelnuttJ.A. Origin of the red shifts in the optical absorption bands of nonplanar tetraalkylporphyrins.J. Am. Chem. Soc.200312551253126810.1021/ja0280933 12553827
    [Google Scholar]
  53. SchreiverI. Tattoo pigments: Biodistribution and toxicity of corresponding laser induced decomposition products. Doctoral dissertation
    [Google Scholar]
  54. SinghA.V. BhardwajP. UpadhyayA.K. PaganiA. UpadhyayJ. BhadraJ. TisatoV. ThakurM. GemmatiD. MishraR. ZamboniP. Navigating regulatory challenges in molecularly tailored nanomedicine.Exploration of BioMat-X20241212413410.37349/ebmx.2024.00009
    [Google Scholar]
  55. LiJ. MaW. ChenC. ZhaoJ. ZhuH. GaoX. Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation.J. Mol. Catal. Chem.2007261113113810.1016/j.molcata.2006.08.018
    [Google Scholar]
  56. MinghettiP. MusazziU.M. DoratiR. RoccoP. The safety of tattoo inks: Possible options for a common regulatory framework.Sci. Total Environ.2019651Pt 163463710.1016/j.scitotenv.2018.09.178 30245419
    [Google Scholar]
  57. HassanA.U. SumrraS.H. MustafaG. ZubairM. MohyuddinA. NoreenS. ImranM. Creating intense and refined NLO responses by utilizing dual donor structural designs in A-π-D-π-D-π-A type organic switches: Computed device parameters.Struct. Chem.20233462021203810.1007/s11224‑023‑02138‑8
    [Google Scholar]
  58. VerganiP GadsbyDC CsanádyL Roberts, GC Encyclopedia of Biophysics.ResearchGate2013921931
    [Google Scholar]
  59. UkpanukpongR.U. AzubuikeA.E. AgwupuyeE.I. AjenM.U. BocoH.M. ChukwunekeC.P. BenjaminI. LouisH. Exploring the potential of compounds isolated from Laranthus micranthus for the treatment of benign prostatic hyperplasia: Comprehensive studies on spectroscopic, reactivity, and biological activity.Chemistry Africa20247267168710.1007/s42250‑023‑00778‑1
    [Google Scholar]
  60. ChuangY.H. WuK.L. LinW.C. ShiH.J. Photolysis of chlorine dioxide under UVA irradiation: Radical formation, application in treating micropollutants, formation of disinfection byproducts, and toxicity under scenarios relevant to potable reuse and drinking water.Environ. Sci. Technol.20225642593260410.1021/acs.est.1c05707 35025487
    [Google Scholar]
  61. KrügerT.P.J. WientjesE. CroceR. van GrondelleR. Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes.Proc. Natl. Acad. Sci. USA201110833135161352110.1073/pnas.1105411108 21808044
    [Google Scholar]
  62. ParkerD. Current problems in dermatology.Immunology1973243590
    [Google Scholar]
  63. WijesekaraT. XuB. A critical review on the stability of natural food pigments and stabilization techniques.Food Res. Int.202417911401110.1016/j.foodres.2024.114011 38342519
    [Google Scholar]
  64. ShibaevV. BobrovskyA. BoikoN. Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties.Prog. Polym. Sci.200328572983610.1016/S0079‑6700(02)00086‑2
    [Google Scholar]
  65. SunG.J. ChaeK.H. Properties of 2,3-butanedione and 1-phenyl-1,2-propanedione as new photosensitizers for visible light cured dental resin composites.Polymer200041166205621210.1016/S0032‑3861(99)00832‑0
    [Google Scholar]
  66. BereraR. van GrondelleR. KennisJ.T.M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.Photosynth. Res.20091012-310511810.1007/s11120‑009‑9454‑y 19578970
    [Google Scholar]
  67. MahmoudB.H. RuvoloE. HexselC.L. LiuY. OwenM.R. KolliasN. LimH.W. HamzaviI.H. Impact of long-wavelength UVA and visible light on melanocompetent skin.J. Invest. Dermatol.201013082092209710.1038/jid.2010.95 20410914
    [Google Scholar]
  68. PaviaDL LampmanGM KrizGS VyvyanJR Introduction to spectroscopy.
    [Google Scholar]
  69. BerthomieuC. HienerwadelR. Fourier transform infrared (FTIR) spectroscopy.Photosynth. Res.20091012-315717010.1007/s11120‑009‑9439‑x 19513810
    [Google Scholar]
  70. DingZ. LiuJ. ChenH. HuangS. EvrendilekF. HeY. ZhengL. Co-pyrolysis performances, synergistic mechanisms, and products of textile dyeing sludge and medical plastic wastes.Sci. Total Environ.202179914939710.1016/j.scitotenv.2021.149397 34371397
    [Google Scholar]
  71. MousaM.A.A. WangY. AntoraS.A. Al-qurashiA.D. IbrahimO.H.M. HeH.J. LiuS. KamruzzamanM. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils.Crit. Rev. Food Sci. Nutr.202262298009802710.1080/10408398.2021.1922872 33977844
    [Google Scholar]
  72. DongX. LiX. DingL. CuiF. TangZ. LiuZ. Stage extraction of capsaicinoids and red pigments from fresh red pepper (Capsicum) fruits with ethanol as solvent.Lebensm. Wiss. Technol.201459139640210.1016/j.lwt.2014.04.051
    [Google Scholar]
  73. BeekesM. LaschP. NaumannD. Analytical applications of fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research.Vet. Microbiol.2007123430531910.1016/j.vetmic.2007.04.010 17540519
    [Google Scholar]
  74. SarkodieB. AcheampongC. AsinyoB. ZhangX. TawiahB. Characteristics of pigments, modification, and their functionalities.Color Res. Appl.201944339641010.1002/col.22359
    [Google Scholar]
  75. LavineB. Workman, J. Chemometrics.Anal. Chem.200880124519453110.1021/ac800728t 18484744
    [Google Scholar]
  76. SinghA.V. VarmaM. RaiM. Pratap SinghS. BansodG. LauxP. LuchA. Advancing predictive risk assessment of chemicals via integrating machine learning, computational modeling, and chemical/nano‐quantitative structure‐activity relationship approaches.Adv. Intell. Syst.202464230036610.1002/aisy.202300366
    [Google Scholar]
/content/journals/cac/10.2174/0115734110316443240725051037
Loading
/content/journals/cac/10.2174/0115734110316443240725051037
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): chemometric modelling; FT-IR; PCA; Permanent make-Up (PMU); photolysis; UV-vis spectroscopy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test