Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Given the rapid increase in serious infectious and inflammatory diseases in the general population worldwide, it is vital to advance our understanding of the process of infection and inflammation.

Objective

These illnesses can be treated by diverse cytokines, chemokines, and chemical compounds, but how to find and identify effective protein drugs is unknown. In this study, large–scale analytical approaches, such as high–throughput chips with RNA-Seq that construct the protein regulatory networks, were established.

Methods

:shRNA (1–3) and GFP: Control lentivirus were fabricated to infect Human Brain Microvascular Endothelial Cells (HBMEC) to knock down gene that not only possesses bio-chemical activity but also bio-mechanical properties. Once HBMEC was loaded on the 18mmX18mm circular soft cover slip, by knocking down gene and adding puromycin, a large number of cytokines were secreted to activate both autophagy and endosome vesicle signaling by KEGG pathway analysis, which was successfully detected by both ELISA approach and QAH-Neu-1 chip, but no secretion from GFP: Control.

Results

It was demonstrated that the gene was highly responsive to cytokines. The protein regulatory network from RNA–Seq platform demonstrated that the secretion by knocking down the gene was highly correlated with autophagy, endosome, multivesicular body, phosphatidylinositol, and necrosis signalling pathway. Furthermore, most of the cytokines expressed were found to be specific for intracellular vesicle–dependent secretion, leading to obvious cell swelling and shedding, membrane protein dotting to nucleation, and actin dynamics. Interestingly, it was also found that autophagy, together with endosome signalling, was collectively activated to boost the secretion to cause a “cytokine storm”, which led to lipid phase separation.

Conclusion

This study proposed high throughput approaches centered on the gene network for many severe diseases, providing novel insight into biological pathways influencing infection and inflammation (., COVID-19/). They can be modulated as potential therapeutic targets and used as biomarkers in the diagnosis and treatment of many diseases to promote human health. This increases our interest in developing new leadless-peptides at the genomics and proteomics levels to obtain cytokines and chemokines for micro-array constructions (VirD‒cytokines, VirD‒enzymes, VirD‒polymers) by membane protein fusion strategy, antibody and vaccine development for infections, diabetes, cardiovascular disease, atherosclerosis, non–alcoholic fatty liver, auto-immune, neurodegenerative disorder, and even cancer-related disease therapy. They have the most valuable applications in molecular diagnosis, protein marker discovery, and bio-therapy.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110282381240910183313
2024-09-12
2025-10-03
Loading full text...

Full text loading...

References

  1. ThompsonM.G. BurgessJ.L. NalewayA.L. TynerH. YoonS.K. MeeceJ. OlshoL.E.W. Caban-MartinezA.J. FowlkesA.L. LutrickK. GroomH.C. DunniganK. OdeanM.J. HegmannK. StefanskiE. EdwardsL.J. Schaefer-SolleN. GrantL. EllingsonK. KuntzJ.L. ZunieT. ThieseM.S. IvacicL. WesleyM.G. Mayo LamberteJ. SunX. SmithM.E. PhillipsA.L. GrooverK.D. YooY.M. GeraldJ. BrownR.T. HerringM.K. JosephG. BeitelS. MorrillT.C. MakJ. RiversP. PoeB.P. LynchB. ZhouY. ZhangJ. KelleherA. LiY. DickersonM. HansonE. GuentherK. TongS. BatemanA. ReisdorfE. BarnesJ. Azziz-BaumgartnerE. HuntD.R. ArvayM.L. KuttyP. FryA.M. GaglaniM. Prevention and attenuation of COVID-19 with the BNT162b2 and mRNA-1273 vaccines.N. Engl. J. Med.2021385432032910.1056/NEJMoa2107058 34192428
    [Google Scholar]
  2. HongQ. HanW. LiJ. XuS. WangY. XuC. LiZ. WangY. ZhangC. HuangZ. CongY. Molecular basis of receptor binding and antibody neutralization of Omicron.Nature2022604790654655210.1038/s41586‑022‑04581‑9 35228716
    [Google Scholar]
  3. IketaniS. LiuL. GuoY. LiuL. ChanJ.F.W. HuangY. WangM. LuoY. YuJ. ChuH. ChikK.K.H. YuenT.T.T. YinM.T. SobieszczykM.E. HuangY. YuenK.Y. WangH.H. ShengZ. HoD.D. Antibody evasion properties of SARS-CoV-2 Omicron sublineages.Nature2022604790655355610.1038/s41586‑022‑04594‑4 35240676
    [Google Scholar]
  4. AzizA.B. RaqibR. KhanW.A. RahmanM. HaqueR. AlamM. ZamanK. RossA.G. Integrated control of COVID-19 in resource-poor countries.Int. J. Infect. Dis.20201019810110.1016/j.ijid.2020.09.009 32916249
    [Google Scholar]
  5. SreepadmanabhM. SahuA.K. ChandeA. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development.J. Biosci.202045114810.1007/s12038‑020‑00114‑6 33410425
    [Google Scholar]
  6. PradhanM. ShahK. AlexanderA. Ajazuddin, MinzS. SinghM.R SinghD. YadavK. ChauhanN.S. COVID-19: clinical presentation and detection methods.J. Immunoassay Immunochem.2022431195129110.1080/15321819.2021.1951291 34355645
    [Google Scholar]
  7. RosengrenB. Jönsson-RylanderA.C. PeilotH. CamejoG. Hurt-CamejoE. Distinctiveness of secretory phospholipase A2 group IIA and V suggesting unique roles in atherosclerosis.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20061761111301130810.1016/j.bbalip.2006.06.008 17070102
    [Google Scholar]
  8. SamuchiwalS.K. BalestrieriB. Harmful and protective roles of group V phospholipase A2: Current perspectives and future directions.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864681982610.1016/j.bbalip.2018.10.001 30308324
    [Google Scholar]
  9. SatoH. TaketomiY. UshidaA. IsogaiY. KojimaT. HirabayashiT. MikiY. YamamotoK. NishitoY. KobayashiT. IkedaK. TaguchiR. HaraS. IdaS. MiyamotoY. WatanabeM. BabaH. MiyataK. OikeY. GelbM.H. MurakamiM. The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity.Cell Metab.201420111913210.1016/j.cmet.2014.05.002 24910243
    [Google Scholar]
  10. EisenbarthS.C. ColegioO.R. O’ConnorW. SutterwalaF.S. FlavellR.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants.Nature200845371981122112610.1038/nature06939 18496530
    [Google Scholar]
  11. Baroja-MazoA. Martín-SánchezF. GomezA.I. MartínezC.M. Amores-IniestaJ. CompanV. Barberà-CremadesM. YagüeJ. Ruiz-OrtizE. AntónJ. BujánS. CouillinI. BroughD. ArosteguiJ.I. PelegrínP. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response.Nat. Immunol.201415873874810.1038/ni.2919 24952504
    [Google Scholar]
  12. SchurF.K.M. ObrM. HagenW.J.H. WanW. JakobiA.J. KirkpatrickJ.M. SachseC. KräusslichH.G. BriggsJ.A.G. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.Science2016353629850650810.1126/science.aaf9620 27417497
    [Google Scholar]
  13. WuY. WeiQ. YuJ. The cGAS/STING pathway: A sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration.Clin. Interv. Aging2019141277128310.2147/CIA.S200637 31371933
    [Google Scholar]
  14. Lopez-CastejonG. BroughD. Understanding the mechanism of IL-1β secretion.Cytokine Growth Factor Rev.201122418919510.1016/j.cytogfr.2011.10.001 22019906
    [Google Scholar]
  15. DinarelloC.A. A clinical perspective of IL‐1β as the gatekeeper of inflammation.Eur. J. Immunol.20114151203121710.1002/eji.201141550 21523780
    [Google Scholar]
  16. FengY. ChenC.S. HoJ. PearceD. HuS. WangB. DesaiP. KimK.S. ZhuH. High-throughput chip assay for investigating Escherichia coli interaction with the blood-brain-barrier using microbial and human proteome microarrays (dual-microarray technology).Anal. Chem.20189018109581096610.1021/acs.analchem.8b02513 30106562
    [Google Scholar]
  17. HuS. FengY. HensonB. WangB. HuangX. LiM. DesaiP. ZhuH. VirD. A virion display array for profiling functional membrane proteins.Anal. Chem.201385178046805410.1021/ac401795y 23941274
    [Google Scholar]
  18. FangX. WangL. IshikawaR. LiY. FiedlerM. LiuF. CalderG. RowanB. WeigelD. LiP. DeanC. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes.Nature2019569775526526910.1038/s41586‑019‑1165‑8 31043738
    [Google Scholar]
  19. ShimobayashiS.F. RoncerayP. SandersD.W. HaatajaM.P. BrangwynneC.P. Nucleation landscape of biomolecular condensates.Nature2021599788550350610.1038/s41586‑021‑03905‑5 34552246
    [Google Scholar]
  20. FengY. HuangJ. QuC. HuangM. ChenZ. TangD. XuZ. WangB. ChenZ. Future perspective: High-throughput construction of new ultrasensitive cytokine and virion liquid chips for high-throughput screening (HTS) of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases.Anal. Bioanal. Chem.2020412287685769910.1007/s00216‑020‑02894‑0 32870351
    [Google Scholar]
  21. SandersD.W. KedershaN. LeeD.S.W. StromA.R. DrakeV. RibackJ.A. BrachaD. EeftensJ.M. IwanickiA. WangA. WeiM.T. WhitneyG. LyonsS.M. AndersonP. JacobsW.M. IvanovP. BrangwynneC.P. Competing protein-RNA interaction networks control multiphase intracellular organization.Cell20201812306324.e2810.1016/j.cell.2020.03.050 32302570
    [Google Scholar]
  22. ChenC.S. KorobkovaE. ChenH. ZhuJ. JianX. TaoS.C. HeC. ZhuH. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli.Nat. Methods200851697410.1038/nmeth1148 18084297
    [Google Scholar]
  23. HeriantoS. ChenC.S. ZhuH. Protein microarrays and liposome: A method for studying lipid-protein interactions.Methods Mol. Biol.2019200319119910.1007/978‑1‑4939‑9512‑7_10 31218620
    [Google Scholar]
  24. CaiZ. JitkaewS. ZhaoJ. ChiangH.C. ChoksiS. LiuJ. WardY. WuL. LiuZ.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.Nat. Cell Biol.2014161556510.1038/ncb2883 24316671
    [Google Scholar]
  25. MaruvadaR. KimK.S. IbeA and OmpA of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells.Infect. Immun.20128062035204110.1128/IAI.06320‑11 22451524
    [Google Scholar]
  26. ZhangZ. BaiM. BarbosaG. KornbergT.B. MaD.K. The conserved ER-trans-membrane protein TMEM39 co-ordinates with COPII to promote collagen secretion and prevent ER stress.PLoS Genet.2021172e100931710.1371/journal.pgen.1009317 33524011
    [Google Scholar]
  27. MaD.K. RotheM. ZhengS. BhatlaN. PenderC.L. MenzelR. HorvitzH.R. Cytochrome P450 drives a HIF-regulated behavioral response to reoxygenation by C. elegans.Science2013341614555455810.1126/science.1235753 23811225
    [Google Scholar]
  28. AlbertiS. GladfelterA. MittagT. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates.Cell2019176341943410.1016/j.cell.2018.12.035 30682370
    [Google Scholar]
  29. KellerJ. EllievaA. MaD.K. JuJ. NehkE. KonkelA. FalckJ.R. SchunckW.H. MenzelR. CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation.Biochem. J.20144641617110.1042/BJ20140848 25138176
    [Google Scholar]
  30. ColinL. ChevallierA. TsugawaS. GaconF. GodinC. ViasnoffV. SaundersT.E. HamantO. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts.Proc. Natl. Acad. Sci. USA202011751327313273810.1073/pnas.2008895117 33288703
    [Google Scholar]
  31. CohenD. BrennwaldP.J. Rodriguez-BoulanE. MüschA. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton.J. Cell Biol.2004164571772710.1083/jcb.200308104 14981097
    [Google Scholar]
  32. MichaudJ.E. KimK.S. HartyW. KasprenskiM. WangM.H. Cytotoxic necrotizing factor-1 (CNF1) does not promote E. coli infection in a murine model of ascending pyelonephritis.BMC Microbiol.201717112710.1186/s12866‑017‑1036‑0 28545489
    [Google Scholar]
  33. KimK.S. Mechanisms of microbial traversal of the blood–brain barrier.Nat. Rev. Microbiol.20086862563410.1038/nrmicro1952 18604221
    [Google Scholar]
  34. KimK.S. Escherichia coli translocation at the blood-brain barrier.Infect. Immun.20016995217522210.1128/IAI.69.9.5217‑5222.2001 11500388
    [Google Scholar]
  35. KimK.S. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury.Nat. Rev. Neurosci.20034537638510.1038/nrn1103 12728265
    [Google Scholar]
  36. DoveyC.M. DiepJ. ClarkeB.P. HaleA.T. McNamaraD.E. GuoH. BrownN.W.Jr CaoJ.Y. GraceC.R. GoughP.J. BertinJ. DixonS.J. FiedlerD. MocarskiE.S. KaiserW.J. MoldoveanuT. YorkJ.D. CaretteJ.E. MLKL requires the inositol phosphate code to execute necroptosis.Mol. Cell2018705936948.e710.1016/j.molcel.2018.05.010 29883610
    [Google Scholar]
  37. RibesS. MeisterT. OttM. RedlichS. JanovaH. HanischU.K. NesslerS. NauR. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection.J. Neuroinflammation20141111410.1186/1742‑2094‑11‑14 24456653
    [Google Scholar]
  38. DickR.A. ZadroznyK.K. XuC. SchurF.K.M. LyddonT.D. RicanaC.L. WagnerJ.M. PerillaJ.R. Ganser-PornillosB.K. JohnsonM.C. PornillosO. VogtV.M. Inositol phosphates are assembly co-factors for HIV-1.Nature2018560771950951210.1038/s41586‑018‑0396‑4 30069050
    [Google Scholar]
  39. QamarS. WangG. RandleS.J. RuggeriF.S. VarelaJ.A. LinJ.Q. PhillipsE.C. MiyashitaA. WilliamsD. StröhlF. MeadowsW. FerryR. DardovV.J. TartagliaG.G. FarrerL.A. Kaminski SchierleG.S. KaminskiC.F. HoltC.E. FraserP.E. Schmitt-UlmsG. KlenermanD. KnowlesT. VendruscoloM. St George-HyslopP. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-p Interactions.Cell20181733720734.e1510.1016/j.cell.2018.03.056 29677515
    [Google Scholar]
  40. BoeynaemsS. AlbertiS. FawziN.L. MittagT. PolymenidouM. RousseauF. SchymkowitzJ. ShorterJ. WolozinB. Van Den BoschL. TompaP. FuxreiterM. Protein phase separation: A new phase in cell biology.Trends Cell Biol.201828642043510.1016/j.tcb.2018.02.004 29602697
    [Google Scholar]
  41. YoshizawaT. AliR. JiouJ. FungH.Y.J. BurkeK.A. KimS.J. LinY. PeeplesW.B. SaltzbergD. SoniatM. BaumhardtJ.M. OldenbourgR. SaliA. FawziN.L. RosenM.K. ChookY.M. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites.Cell20181733693705.e2210.1016/j.cell.2018.03.003 29677513
    [Google Scholar]
  42. ShinY. BrangwynneC.P. Liquid phase condensation in cell physiology and disease.Science20173576357eaaf438210.1126/science.aaf4382 28935776
    [Google Scholar]
  43. GuoL. KimH.J. WangH. MonaghanJ. FreyermuthF. SungJ.C. O’DonovanK. FareC.M. DiazZ. SinghN. ZhangZ.C. CoughlinM. SweenyE.A. DeSantisM.E. JackrelM.E. RodellC.B. BurdickJ.A. KingO.D. GitlerA.D. Lagier-TourenneC. PandeyU.B. ChookY.M. TaylorJ.P. ShorterJ. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with Prion-like domains.Cell20181733677692.e2010.1016/j.cell.2018.03.002 29677512
    [Google Scholar]
  44. DuewellP. KonoH. RaynerK.J. SiroisC.M. VladimerG. BauernfeindF.G. AbelaG.S. FranchiL. NuñezG. SchnurrM. EspevikT. LienE. FitzgeraldK.A. RockK.L. MooreK.J. WrightS.D. HornungV. LatzE. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature201046472931357136110.1038/nature08938 20428172
    [Google Scholar]
  45. CaiX. ChenJ. XuH. LiuS. JiangQ.X. HalfmannR. ChenZ.J. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation.Cell201415661207122210.1016/j.cell.2014.01.063 24630723
    [Google Scholar]
  46. SchroderK. TschoppJ. The inflammasomes.Cell2010140682183210.1016/j.cell.2010.01.040 20303873
    [Google Scholar]
  47. LuA. MagupalliV.G. RuanJ. YinQ. AtianandM.K. VosM.R. SchröderG.F. FitzgeraldK.A. WuH. EgelmanE.H. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes.Cell201415661193120610.1016/j.cell.2014.02.008 24630722
    [Google Scholar]
  48. DinarelloC.A. Immunological and inflammatory functions of the interleukin-1 family.Annu. Rev. Immunol.200927151955010.1146/annurev.immunol.021908.132612 19302047
    [Google Scholar]
  49. YangX. LinC. ChenX. LiS. LiX. XiaoB. Structure deformation and curvature sensing of PIEZO1 in lipid membranes.Nature2022604790537738310.1038/s41586‑022‑04574‑8 35388220
    [Google Scholar]
  50. TangY. JiaY. FanL. LiuH. ZhouY. WangM. LiuY. ZhuJ. PangW. ZhouJ. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1.Circ. Res.202213011e26e4310.1161/CIRCRESAHA.122.320846 35450439
    [Google Scholar]
  51. RibackJ.A. ZhuL. FerrolinoM.C. TolbertM. MitreaD.M. SandersD.W. WeiM.T. KriwackiR.W. BrangwynneC.P. Composition-dependent thermodynamics of intracellular phase separation.Nature2020581780720921410.1038/s41586‑020‑2256‑2 32405004
    [Google Scholar]
  52. DupontN. JiangS. PilliM. OrnatowskiW. BhattacharyaD. DereticV. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β.EMBO J.201130234701471110.1038/emboj.2011.398 22068051
    [Google Scholar]
  53. EzakiJ. MatsumotoN. Takeda-EzakiM. KomatsuM. TakahashiK. HiraokaY. TakaH. FujimuraT. TakehanaK. YoshidaM. IwataJ. TanidaI. FuruyaN. ZhengD.M. TadaN. TanakaK. KominamiE. UenoT. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels.Autophagy20117772773610.4161/auto.7.7.15371 21471734
    [Google Scholar]
  54. GeeH.Y. NohS.H. TangB.L. KimK.H. LeeM.G. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway.Cell2011146574676010.1016/j.cell.2011.07.021 21884936
    [Google Scholar]
  55. SyuG.D. WangS.C. MaG. LiuS. PearceD. PrakashA. HensonB. WengL.C. GhoshD. RamosP. EichingerD. PinoI. DongX. XiaoJ. WangS. TaoN. KimK.S. DesaiP.J. ZhuH. Development and application of a high-content virion display human GPCR array.Nat. Commun.2019101199710.1038/s41467‑019‑09938‑9 31040288
    [Google Scholar]
  56. MaG. SyuG.D. ShanX. HensonB. WangS. DesaiP.J. ZhuH. TaoN. Measuring ligand binding kinetics to membrane proteins using virion nano-oscillators.J. Am. Chem. Soc.201814036114951150110.1021/jacs.8b07461 30114365
    [Google Scholar]
  57. YamaguchiM. SamuchiwalS.K. QuehenbergerO. BoyceJ.A. BalestrieriB. Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms.Mucosal Immunol.201811361562610.1038/mi.2017.99 29346348
    [Google Scholar]
  58. BalestrieriB. ArmJ.P. Group V sPLA2: Classical and novel functions.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20061761111280128810.1016/j.bbalip.2006.07.008 16945583
    [Google Scholar]
  59. PiccioliP. RubartelliA. The secretion of IL-1β and options for release.Semin. Immunol.201325642542910.1016/j.smim.2013.10.007 24201029
    [Google Scholar]
  60. TamayoI. VelascoS.E. PuyC. EsmonC.T. DichiaraM.G. MontesR. HermidaJ. Group V secretory phospholipase A2 impairs endothelial protein C receptor‐dependent protein C activation and accelerates thrombosis in vivo.J. Thromb. Haemost.201412111921192710.1111/jth.12676 25069533
    [Google Scholar]
  61. LapointeS. BrkovicA. CloutierI. TanguayJ.F. ArmJ.P. SiroisM.G. Group V secreted phospholipase A 2 contributes to LPS‐induced leukocyte recruitment.J. Cell. Physiol.2010224112713410.1002/jcp.22106 20232296
    [Google Scholar]
  62. MuñozN.M. MelitonA.Y. MelitonL.N. DudekS.M. LeffA.R. Secretory group V phospholipase A 2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice.Am. J. Physiol. Lung Cell. Mol. Physiol.20092966L879L88710.1152/ajplung.90580.2008 19286925
    [Google Scholar]
  63. Szymczak-PajorI. KleniewskaP. WieczfinskaJ. PawliczakR. Wide-range effects of 1,25(OH)2D3 on group 4A phospholipases is related to nuclear factor k-B and phospholipase-A2 activating protein activity in mast cells.Int. Arch. Allergy Immunol.20201811567010.1159/000503628 31707382
    [Google Scholar]
  64. BalestrieriB. MaekawaA. XingW. GelbM.H. KatzH.R. ArmJ.P. Group V secretory phospholipase A2 modulates phagosome maturation and regulates the innate immune response against Candida albicans.J. Immunol.200918284891489810.4049/jimmunol.0803776 19342668
    [Google Scholar]
  65. HanS.K. KimK.P. KoduriR. BittovaL. MunozN.M. LeffA.R. WiltonD.C. GelbM.H. ChoW. Roles of Trp31 in high membrane binding and proinflammatory activity of human group V phospholipase A2.J. Biol. Chem.199927417118811188810.1074/jbc.274.17.11881 10207008
    [Google Scholar]
  66. YamaguchiM. ZachariaJ. LaidlawT.M. BalestrieriB. PLA2G5 regulates transglutaminase activity of human IL-4-activated M2 macrophages through PGE2 generation.J. Leukoc. Biol.2016100113114110.1189/jlb.3A0815‑372R 26936936
    [Google Scholar]
  67. SeenaV. RajoryaA. PantP. MukherjiS. RaoV.R. Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection.Solid State Sci.20091191606161110.1016/j.solidstatesciences.2009.06.009
    [Google Scholar]
  68. AaronJ.S. TaylorA.B. ChewT.L. Image co-localization – co-occurrence versus correlation.J. Cell Sci.20181313jcs21184710.1242/jcs.211847 29439158
    [Google Scholar]
  69. FengY. WangB. CaoY. HeR. Two novel approaches targeting cancer cell membrane for tumor therapy.Med. Hypotheses201380438038210.1016/j.mehy.2012.12.025 23374423
    [Google Scholar]
  70. MariathasanS. WeissD.S. NewtonK. McBrideJ. O’RourkeK. Roose-GirmaM. LeeW.P. WeinrauchY. MonackD.M. DixitV.M. Cryopyrin activates the inflammasome in response to toxins and ATP.Nature2006440708122823210.1038/nature04515 16407890
    [Google Scholar]
  71. LiuH. LiuY. WangH. ZhaoQ. ZhangT. XieS. LiuY. TangY. PengQ. PangW. YaoW. ZhouJ. Geometric constraints regulate energy metabolism and cellular contractility in vascular smooth muscle cells by coordinating mitochondrial DNA methylation.Adv. Sci.2022932220399510.1002/advs.202203995 36106364
    [Google Scholar]
  72. NonakaH. FujishimaS. UchinomiyaS. OjidaA. HamachiI. Selective covalent labeling of tag-fused GPCR proteins on live cell surface with a synthetic probe for their functional analysis.J. Am. Chem. Soc.2010132279301930910.1021/ja910703v 20568758
    [Google Scholar]
  73. MaG. GuanY. WangS. XuH. TaoN. Study of small-molecule–membrane protein binding kinetics with nanodisc and charge-sensitive optical detection.Anal. Chem.20168842375237910.1021/acs.analchem.5b04366 26752355
    [Google Scholar]
  74. CaseyJ.R. GrinsteinS. OrlowskiJ. Sensors and regulators of intracellular pH.Nat. Rev. Mol. Cell Biol.2010111506110.1038/nrm2820 19997129
    [Google Scholar]
  75. GiacominiK.M. HuangS.M. TweedieD.J. BenetL.Z. BrouwerK.L.R. ChuX. DahlinA. EversR. FischerV. HillgrenK.M. HoffmasterK.A. IshikawaT. KepplerD. KimR.B. LeeC.A. NiemiM. PolliJ.W. SugiyamaY. SwaanP.W. WareJ.A. WrightS.H. Wah YeeS. Zamek-GliszczynskiM.J. ZhangL. Membrane transporters in drug development.Nat. Rev. Drug Discov.20109321523610.1038/nrd3028 20190787
    [Google Scholar]
  76. HauserA.S. ChavaliS. MasuhoI. JahnL.J. MartemyanovK.A. GloriamD.E. BabuM.M. Pharmacogenomics of GPCR drug targets.Cell20181721-24154.e1910.1016/j.cell.2017.11.033 29249361
    [Google Scholar]
  77. YuZ. TangY. CaiG. RenR. TangD. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter.Anal. Chem.20199121222122610.1021/acs.analchem.8b04635 30569701
    [Google Scholar]
  78. HuangL. ChenJ. YuZ. TangD. Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay.Anal. Chem.20209232809281410.1021/acs.analchem.9b05218 31939295
    [Google Scholar]
  79. GeogheganE.M. ZhangH. DesaiP.J. BiragynA. MarkhamR.B. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2.Antimicrob. Agents Chemother.201559152753510.1128/AAC.03818‑14 25385102
    [Google Scholar]
/content/journals/cac/10.2174/0115734110282381240910183313
Loading
/content/journals/cac/10.2174/0115734110282381240910183313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test