Recent Patents on Biotechnology - Volume 14, Issue 4, 2020
Volume 14, Issue 4, 2020
-
-
Recent Patents on the Industrial Application of Alpha-amylases
Authors: André V. F. Ferreira, Felipe F. Silva, Ana Amélia M. Silva, Lucas S. Azevedo, Sara T. D. da Fonseca, Nathalia H. Camilo, Keiza P. E. dos Santos, Leiliane C. de Carvalho, Vinícius S. Tarabal, Jonatas O. da Silva, Juliana M. Machado, Laís M. Nogueira, Fernando Araripe G. Torres and Alexsandro S. GaldinoBackground: Alpha-amylases are enzymes capable of degrading polysaccharides, such as starch and glycogen. Found in various organisms, such as fungi and bacteria, these enzymes have great biotechnological potential due to their insertion in several industrial sectors ranging from food to biofuels. Objective: The aim of this study was to analyze patents deposited in intellectual property databases on alpha-amylases in the fields of food, beverages, detergents, animal feeds, biofuels, pharmaceuticals and textiles, with the search period being 5 years. Methods: This study targeted the use of alpha-amylases in various industrial sectors, so searches were carried out on the intellectual property database Espacenet website (European Patent Office - EPO) which contains more than 90 million patents deposited in its database. Results: During the search for patents filed in the last 5 years, 186 were found related to the use of alpha-amylases. These were disturbed as follows: 84 (biofuel), 41 (drinks), 16 (pharmaceuticals), 15 (detergents), 11 (food), 10 (animal feed), 9 (textiles). From the total number of patents found, we selected 6 from each area, except pharmaceutical products, to discuss and provide information on the application of this enzyme. Conclusion: This study demonstrated that the sectors of beverages and animal feed have preferences for thermostable alpha-amylases while sectors such as food, biofuels and textiles only regarded the importance of enzymatic efficiency. The detergent sector presented the greatest use of alpha-amylases which had distinct biochemical characteristics as solvent resistance and thermostability. The pharmaceutical sector was the one that presented less patents related to the application of alpha amylases. In addition, this work showed that China is the country with the highest patent registration for the use of alpha-amylases in the analyzed period.
-
-
-
Suitable Signal Peptides for Secretory Production of Recombinant Granulocyte Colony Stimulating Factor in Escherichia coli
Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.
-
-
-
First Report of Mycovirus Infected Sclerotinia sclerotiorum in Cauliflower from Sirmaur District of Himachal Pradesh
Authors: Tanvi Gupta, Vanshika, Chandresh Kumari and Saurabh KulshresthaBackground: Sclerotinia sclerotiorum is a ubiquitous fungal pathogen infecting more than 400 plant species. Sclerotinia stem rot is known to cause as high as 100% crop loss in many cases. Currently, chemical fungicides are the only known solution to this problem. Thus, there is an urgent need for developing environment-friendly alternatives for controlling this pathogen. The review of published articles revealed that a number of mycoviruses with the potential of a biocontrol agent against Sclerotinia had been identified from different parts of the world. Objective: The present investigation describes the isolation and characterization of isolates of S. sclerotiorum infecting cauliflower, peas, and mustard for the presence of a potent mycovirus from lower Himachal region of India. Methods: Various infected fields were visited and samples in the form of sclerotia were collected. Various isolates of S. sclerotiorum were obtained, and putative hypovirulent isolates were screened. Thereafter, hypovirulent strains were chosen and mycovirus isolation was performed. Finally, isolates showing an extra nucleic acid band were used for mycovirus isolation and further characterization. Curing of mycovirus was used to confirm if altered phenotype was due to the presence of this virus. Results: A ssDNA mycovirus was identified and confirmed from the growth defective isolate. Conclusion: This mycovirus can in turn act as a biocontrol agent, thus reducing dependency on chemical fungicides and can also be developed in the form of a patent once completely characterized and formulated. To our knowledge, this is the first report on mycovirus isolation from any Sclerotinia sclerotiorumisolate from India.
-
-
-
In Vitro and In Vivo Neutralizing Activity of Uvaria chamae Leaves Fractions on the Venom of Naja nigricollis in Albino Rat and Bovine Blood
Background: Snakebite envenomation is a global priority ranked top among other neglected tropical diseases. There is a folkloric claim that Uvaria chamae is beneficial for the management of snakebite and wounds in African ethnobotanical surveys. Besides, there are many registered patents asserting the health benefits of U. chamae. Objective: This study aimed to investigate U. chamae’s potentials and identify candidates for the development of tools for the treatment and management of N. nigricollis envenomation. Methods: Freshly collected U. chamae leaves were air-dried, powdered, and extracted in methanol. The median lethal dose of the extract was determined and further fractionated with n-hexane, n-butanol and ethyl acetate. Each fraction was tested for neutralizing effect against venom-induced haemolytic, fibrinolytic, hemorrhagic, and cytotoxic activities. Results: U. chamae fractions significantly (p<0.05) neutralized the haemolytic activity of N. nigricollis venom in n-butanol; 31.40%, n-hexane; 33%, aqueous residue; 39.60% and ethyl acetate; 40.70% at the concentration of 100mg/ml of each fraction against 10mg/ml of the snake venom when compared to the positive control. The fibrinolytic activity of N. nigricollis venom was significantly (p<0.05) neutralized in n-hexane at 73.88%, n-butanol; 72.22% and aqueous residue; 72.22% by the fractions of U. chamae. In addition, haemorrhagic activity of N. nigricollis venom was significantly (p<0.05) neutralized by U. chamae fractions at the concentrations of 100mg/ml, 200mg/ml and 400mg/ml except for n-butanol and aqueous residues at 400 mg/ml. Conclusion: U. chamae leaves fractions possess a high level of protection against N. nigricollis venoms-induced lethality and thus validate the pharmacological rationale for its usage in the management of N. nigricollis envenomation.
-
-
-
Designing an Outer Membrane Protein (Omp-W) Based Vaccine for Immunization against Vibrio and Salmonella: An in silico Approach
Background: Cholera triggered by Vibrio cholerae remains the main reason for morbidity and mortality all over the world. In addition, salmonellosis is regarded as an infectious disease that makes it essential for the identification and detection of Salmonella. With a beta-barrel structure consisting of eight non-parallel beta strands, OmpW family is widely distributed among gram-negative bacteria. Moreover, OmpW isolated from S. typhimurium and Vibrio cholerae can be used in vaccine design. Methods: Topology prediction was determined. T-cell and B-cell epitopes were selected from exposed areas, and sequence conservancy was evaluated. The remaining loops and inaccessible residues were removed to prepare OmpW-1. High antigenicity peptides were detected to replace inappropriate residues to obtain OmpW-2. Physicochemical properties were assessed, and antigenicity, hydrophobicity, flexibility, and accessibility were compared to the native Omp-W structure. Low score areas were removed from the designed structure for preparing the OmpW-3. To construct OmpW-4, TTFrC was used as T-CD4+ cell-stimulating factor and CTB as adjuvant to the end of the C-terminal of this sequence, which can increase the antigenicity and sequence density. The sequences were re-analyzed to delete the unfavorable residues. Besides, the solubility of the mature OmpW and the designed structure were predicted while overexpressed in E. coli. Results: The designed vaccine is a stable protein that has immune cells recognizing epitopes and is considered as an antigen. The construct can be overexpressed in an E. coli. Conclusion: The multi-epitope vaccine is a suitable stimulator for the immune system and would be a candidate for experimental research. Recent patents describe numerous inventions related to the clinical facets of vaccine peptide against human infectious disease.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less