Recent Patents on Biotechnology - Volume 14, Issue 3, 2020
Volume 14, Issue 3, 2020
-
-
Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution
More LessAuthors: Pushpinder Sharma and Nivedita SharmaBiosurfactants have a biological origin, and are widely known as surface active agents. Different classes of biosurfactant have significant importance in both the biotechnological and microbiological arena. Pseudomonas aeruginosa, Bacillus subtilis and Candida sp. are important classes of microorganisms that are highly investigated for the production of rhamnolipids (RLs) biosurfactants. Rhamnolipids have unique surface activity and have gained interest in various industrial applications. Due to their high biodegradability, renewability and functionally maintenance at extreme conditions, microbial biosurfactants are more advantageous than chemical-based biosurfactants. Biosurfactants produced by microorganisms are a potential candidate for biodegradation, environmental cleanup of pollutants and also play a role in the heavy metal removal of metallurgical industries also many patents have been filed. Therefore, greater attention has been paid to biosurfactants and identifying their potential applications for further studies.
-
-
-
Prospective Study of Microbial Colorants under the Focus of Patent Documents
More LessBackground: Colorant-producing microorganisms are quite common in nature. These biomolecules present many biological activities such as antitumoral, antimicrobial and antioxidant, in addition to the various nuances of color, making them of special technological importance to the industrial sectors. Objective: This study aims to conduct a technological mapping in the patent, at European patent Office (EPO), in order to evaluate the global panorama of the use of microbial colorants. Methods: The experimental design was acquired by the keyword-driven approach through the advanced search in the Espacenet database European Patent Office (EPO). The keywords selected were bacteria or fungi* or yeast or algae or microorganism* but not plant* and pigment* or color* or colorant* or dye* and the International Patent Classification code, C09B61, for prospecting of interest. Results: There has been a linear increase in patents developed in the last 20 years, with Japan as the largest depositor in the area. The companies Dainippon Ink and Chemicals and Ajinomoto, both being Japanese, are the largest depositors with 20% of all patents. Among the microorganisms, the filamentous fungi appeared in the first place with 32% of documents and the fungi of the genus Monascus were the most frequently used. Conclusion: The use of microbial colorants has been growing among industries, mainly in food sectors, due to the growing demand for products of natural origin. Thus, the increase in research and technological development in the area of microbial colorants can become an economically viable and promising strategy for the various industrial sectors.
-
-
-
Systematic Review and Study of S Curves for Biomass Quantification in Solid-state Fermentation (SSF) and Digital Image Processing (DIP) Applied to Biomass Measurement in Food Processes
More LessBackground: There are several methods for the quantification of biomass in SSF, such as glucosamine measurement, ergosterol content, protein concentration, change in dry weight or evolution of CO2 production. However, all have drawbacks when obtaining accurate data on the progress of the SSF due to the dispersion in cell growth on the solid substrate, and the difficulty encountered in separating the biomass. Studying the disadvantages associated with the process of biomass quantification in SSF, the monitoring of the growth of biomass by a technique known as digital image processing (DIP), consists of obtaining information on the production of different compounds during fermentation, using colorimetric methods based on the pixels that are obtained from photographs. Objective: The purpose of this study was to know about the state of the technology and the advantages of DIP. Methods: The methodology employed four phases; the first describes the search equations for the SSF and the DIP. A search for patents related to SSF and DIP carried out in the Free Patents Online and Patent inspiration databases. Then there is the selection of the most relevant articles in each of the technologies. As a third step, modifications for obtaining the best adjustments were also carried out. Finally, the analysis of the results was done and the inflection years were determined by means of six mathematical models widely studied. Results: For these models, the inflection years were 2018 and 2019 for both the SSF and the DIP. Additionally, the main methods for the measurement of biomass in SSF were found, and are also indicated in the review, as DIP measurement processes have already been carried out using the same technology. Conclusion: In addition, the DIP has shown satisfactory results and could be an interesting alternative for biomass measurement in SSF, due to its ease and versatility.
-
-
-
Marine Algae of the Genus Gracilaria as Multi Products Source for Different Biotechnological and Medical Applications
More LessBackground: Gracilaria has been shown to be an important source of marine bioactive natural biomaterials and compounds. Although there are no enough patents used Gracilaria worldwide, the current study tries to put the Gracilaria on the spot for further important patents in the future. Objective: The current study investigates the pharmaceuticals and biochemical activity of Gracilaria because no previous studies have been carried out to examine the biochemical and pharmaceutical activates of Gracilaria from the Suez Canal of Egypt as an excellent source for bioactive compounds. Methods: Different advanced experimental models and analytical techniques, such as cytotoxicity, total antioxidant capacity, anticancer, and anti-inflammatory profiling were applied. The phytochemical analysis of different constituents was also carried out. Results: The mineral analysis revealed the presence of copper (188.3 ppm) and iron (10.07 ppm) in addition to a remarkable wealth of selenium and sulfur contents giving up to 36% of its dry mass. The elemental analysis showed high contents of sulfur and nitrogen compounds. The GCMS profiling showed varieties of different bioactive compounds, such as fatty acids, different types of carotenoids in addition to pigments, alkaloids, steroids. Many other compounds, such as carbohydrates and amino acids having antioxidant, anti-inflammatory, and antiviral activities, etc. were identified. The cytotoxicity activity of Gracilaria marine extract was very effective against cancerous cell lines and showed high ability as a potent antitumor due to their bioactive constituents. Specialized screening assays using two anticancer experimental models, i.e., PTK and SKH1 revealed 77.88% and 84.50% inhibition anticancer activity; respectively. The anti-inflammatory activities investigated using four different experimental models, i.e., COX1, COX2, IL6, and TNF resulted in 68%, 81.76%, 56.02% and 78.43% inhibition; respectively. Moreover, Gracilaria extracts showed potent anti-Alzheimer with all concentrations. Conclusion: Gracilaria proved to be a multi-product source of marine natural products for different biotechnological applications. Our recommendation is to investigate the Gracilaria bioactive secondary metabolites in order to create and innovate in more patents from current important seaweeds (Gracilaria).
-
-
-
Construction and Cloning of Plastic-degrading Recombinant Enzymes (MHETase)
More LessAuthors: Rifqi Z. Janatunaim and Azzania FibrianiBackground: Polyethylene terephthalate (PET) is the most widely produced polyester plastic in the world. PET is very difficult to catalyze or biological depolymerization due to the limited access to ester bonds. Consequently, plastic will be stockpiled or flowed into the environment which is projected until hundreds of years. The most effective and environmental friendly plastic degradation method is biodegradation with microorganisms. Two specific enzyme for PET hydrolase, PETase and MHETase have been identified from Ideonella sakaiensis 201-F6. Recombinant genes are made to increase the effectiveness of enzymes in degrading PET. Previous studies of the PETase gene have been carried out, but to produce the final degradation PET product, the enzyme MHETase is needed. Thus, in this study the MHETase gene construction was carried out. Methods: The goal of this study is to construct MHETase gene in pUCIDT plasmid with native signal peptide from I. sakaensis 201-F6 and constitutive promoter J23106 was expressed in Escherichia coli BL21 (DE3) by heats shock. Expression analysis using SDS-PAGE and activity of enzyme is analyzed by spectrophotometry method and SEM. Results: MHETase gene protein was successfully constructed in pUCIDT +Amp plasmid with native signal peptide from Ideonella sakaensis 201-F6, T7 terminator and constitutive promoter J23106. PCR analysis showed that the gene successfully contained in the cells by band size (1813 bp) in electrophoresis gel. Analysis using Snap Gene, pairwise alignment using MEGA X, and NCBI was demonstrated that MHETase sequence the gene was in-frame in pUCIDT plasmid. Conclusion: MHETase gene was successfully constructed in plasmids by in silico method. Synthetic plasmids transformed in E. coli BL21 (DE3) contain MHETase gene sequences which were in frame. Hence, the E. coli BL21 (DE3) cells have the potential to produce MHETase proteins for the plastic degradation testing process. We will patent the construct of MHETase gene using constitutive promoter and signal peptide from native which expressed in E. coli BL21 (DE3). This patent refers to a more applicable plastic degradation system with a whole cell without the need for purification and environmental conditioning of pure enzymes.
-
-
-
Amino Acids Sequence-based Analysis of Arginine Deiminase from Different Prokaryotic Organisms: An In Silico Approach
More LessBackground: Arginine deiminase is a bacterial enzyme, which degrades L-arginine. Some human cancers such as hepatocellular carcinoma (HCC) and melanoma are auxotrophic for arginine. Therefore, PEGylated arginine deiminase (ADI-PEG20) is a good anticancer candidate with antitumor effects. It causes local depletion of L-arginine and growth inhibition in arginineauxotrophic tumor cells. The FDA and EMA have granted orphan status to this drug. Some recently published patents have dealt with this enzyme or its PEGylated form. Objective: Due to increasing attention to it, we aimed to evaluate and compare 30 arginine deiminase proteins from different bacterial species through in silico analysis. Methods: The exploited analyses included the investigation of physicochemical properties, multiple sequence alignment (MSA), motif, superfamily, phylogenetic and 3D comparative analyses of arginine deiminase proteins thorough various bioinformatics tools. Results: The most abundant amino acid in the arginine deiminase proteins is leucine (10.13%) while the least amino acid ratio is cysteine (0.98%). Multiple sequence alignment showed 47 conserved patterns between 30 arginine deiminase amino acid sequences. The results of sequence homology among 30 different groups of arginine deiminase enzymes revealed that all the studied sequences located in amidinotransferase superfamily. Based on the phylogenetic analysis, two major clusters were identified. Considering the results of various in silico studies; we selected the five best candidates for further investigations. The 3D structures of the best five arginine deiminase proteins were generated by the I-TASSER server and PyMOL. The RAMPAGE analysis revealed that 81.4%-91.4%, of the selected sequences, were located in the favored region of arginine deiminase proteins. Conclusion: The results of this study shed light on the basic physicochemical properties of thirty major arginine deiminase sequences. The obtained data could be employed for further in vivo and clinical studies and also for developing the related therapeutic enzymes.
-
Volumes & issues
-
Volume 20 (2026)
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less