Recent Patents on Biotechnology - Volume 14, Issue 2, 2020
Volume 14, Issue 2, 2020
- 
- 
Geminiviruses: Taxonomic Structure and Diversity in Genomic OrganizationMore LessAuthors: Saurabh Kulshrestha, Abhishek Bhardwaj and VanshikaBackground: Geminiviridae is one of the best-characterized and hence, one of the largest plant-virus families with the highest economic importance. Its members characteristically have a circular ssDNA genome within the encapsidation of twinned quasi-icosaheadral virions (18-38 nm size-range). Objective: Construction of a narrative review on geminiviruses, to have a clearer picture of their genomic structure and taxonomic status. Methods: A thorough search was conducted for papers and patents regarding geminiviruses, where relevant information was used to study their genomic organization, diversity and taxonomic structure. Results: Geminiviruses have been classified into nine genera (viz., genus Begomovirus, Mastrevirus, Curtovirus, Topocuvirus, Becurtovirus, Turncurtovirus, Capulavirus, Eragrovirus and Grablovirus) having distinct genomic organizations, host ranges and insect vectors. Genomic organization of all genera generally shows the presence of 4-6 ORFs encoding for various proteins. For now, Citrus chlorotic dwarf-associated virus (CCDaV), Camellia chlorotic dwarf-associated virus (CaCDaV) and few other geminiviruses are still unassigned to any genera. The monopartite begomoviruses (and few mastreviruses) have been found associated with aplhasatellites and betasatellites (viz., ~1.3 kb circular ssDNA satellites). Recent reports suggest that deltasatellites potentially reduce the accumulation of helper-Begomovirus species in host plants. Some patents have revealed the methods to generate transgenic plants resistant to geminiviruses. Conclusion: Geminiviruses rapidly evolve and are a highly diverse group of plant-viruses. However, research has shown new horizons in tackling the acute begomoviral diseases in plants by generating a novel bio-control methodology in which deltasatellites can be used as bio-control agents and generate transgenic plants resistant to geminiviruses. 
 
- 
- 
- 
Antimicrobial and Antioxidant Active Food Packaging: Technological and Scientific ProspectionMore LessBackground: Antimicrobial and antioxidant packaging play an important role in the food industry by ensuring food quality and prolonging the product’s shelf life. Therefore, this scientific survey covers the technological domain in the active food packaging development processes and types of packaging. Methods: This paper aims to provide a review of patents and scientific publications on active packaging with antimicrobial and antioxidant properties in order to show technological advances in this field of knowledge and its applicability in the food industry. Results: The patent review indicates an increase in the number of documents deposited in recent decades regarding various types of packaging formulations, particularly active packaging to preserve foods and their shelf life. In the last few decades, the scientific publication also includes several studies concerning the development of active food packaging using natural products with antimicrobial and antioxidant proprieties. Overall, the results show the advantages of incorporating natural products into polymer matrices to develop industrial packaging, providing a safe and high-quality food product to the consumer. On the other hand, the review also highlighted lack of cooperation between inventors and companies of active packaging development. Conclusion: Further study in this regard would help provide data form research and patents on the active food-packaging field as well as economic issues, indicating the global development scenario of this innovative area. 
 
- 
- 
- 
Evolution of World and Brazilian Markets for Enzymes Produced by Solid-state Fermentation: A Patent AnalysisMore LessBackground: The use of enzymes in various industrial processes has become increasingly frequent. When added to productive processes, it can accelerate reactions and generate a number of new products. The solid state fermentation (SSF), among other applications, has been employed also to obtain enzymes. Objective: The purpose of this prospection was to map registered patent documents about enzymes production by this type of fermentation in the world, identify the most obtained enzymes with patent documents and compilate information about the world and Brazilian enzyme markets. Methods: The experimental design was carried out by the keyword-driven scope through the advanced search in the Espacenet database European Patent Office (EPO). The keywords selected were solid-state fermentation and the International Patent Classification code, C12N9 (enzymes; proenzymes), for prospecting of interest. Results: In 2012, there was the higher number of registered patents (12). China holds 84% of deposited patents. Among the types of depositors, 54% of the selected patent documents were deposited by universities and institutes, and 44% by companies. 76.5% of the evaluated patents used fungi as enzyme producer. Analyzing the enzymes obtained in the registered patents, it is verified that the majority belongs to the group of carbohydrases with 43%, followed by proteases (25%), which are also the two classes of enzymes most commercialized in the market. Conclusion: China holds the majority of the registered patents but North America gets the largest global enzyme market revenue followed by Europe and Pacific Asia. Carbohydrases were the most commercialized enzymes and with the highest number of patents registered. Among the carbohydrases, cellulases, xylanases and amylases are the most frequent in patent registration while being fungi produced. 
 
- 
- 
- 
Biodecomposition of Phenanthrene and Pyrene by a Genetically Engineered Escherichia coliMore LessBackground: Genetically engineered microorganisms (GEMs) can be used for bioremediation of the biological pollutants into nonhazardous or less-hazardous substances, at lower cost. Polycyclic aromatic hydrocarbons (PAHs) are one of these contaminants that associated with a risk of human cancer development. Genetically engineered E. coli that encoded catechol 2,3- dioxygenase (C230) was created and investigated its ability to biodecomposition of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) measurement. We revised patents documents relating to the use of GEMs for bioremediation. This approach have already been done in others studies although using other genes codifying for same catechol degradation approach. Objective: In this study, we investigated biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli. Methods: Briefly, following the cloning of C230 gene (nahH) into pUC18 vector and transformation into E. coli Top10F, the complementary tests, including catalase, oxidase and PCR were used as on isolated bacteria from spiked soil. Results: The results of HPLC measurement showed that in spiked soil containing engineered E. coli, biodegradation of phenanthrene and pyrene comparing to autoclaved soil that inoculated by wild type of E. coli and normal soil group with natural microbial flora, were statistically significant (p<0.05). Moreover, catalase test was positive while the oxidase tests were negative. Conclusion: These findings indicated that genetically manipulated E. coli can provide an effective clean-up process on PAH compounds and it is useful for bioremediation of environmental pollution with petrochemical products. 
 
- 
- 
- 
Detoxifying Action of Aqueous Extracts of Mucuna pruriens Seed and Mimosa pudica Root Against Venoms of Naja nigricollis and Bitis arietansMore LessBackground: The World Health Organization included snakebite envenomation among Neglected Tropical Diseases in 2017. The importance of natural products from plants is enormous, given that most prescribed drugs originate from plants. Among this is Mucuna pruriens and Mimosa pudica, with many registered patents asserting their health benefits. Objective: This study investigated the in vitro neutralizing effects of Mucuna pruriens seed and Mimosa pudica root extracts on venoms of Naja nigricollis and Bitis arietans. Methods: In mice, the LD50 and phytochemical analysis of M. pruriens and M. pudica plant extracts were carried out prior to the evaluation of their haemolytic and fibrinolytic effect. Their effects on the activities of phospholipase A2 (PLA2) were also assessed. Results: At a concentration of 50 mg/ml, both plant extracts were found to neutralize the fibrinolytic activity of N. nigricollis, but 400 mg/ml was required to neutralize the fibrinolytic activity of B. arietans. In haemolytic studies, 50 mg/ml concentration of M. pruriens extract suppressed haemolysis caused by N. nigricollis venom by 70% but at the same concentration, M. pudica extract reduced haemolysis by 49.4%. M. pruriens, at 50 mg/ml concentration, only inhibited phospholipase A2 activity by 7.7% but higher concentrations up to 400mg/ml had no effect against the venom of N. nigricollis; at 200 mg/ml. M. pudica extract inhibited PLA2 activity by 23%. Conclusion: The results suggest that M. pruriens and M. pudica may be considered as promising antivenom agents for people living in a snake-bite prone environment. 
 
- 
- 
- 
Effects of Sulfur Starvation on Growth Rates, Biomass and Lipid Contents in the Green Microalga Scenedesmus obliquusMore LessAuthors: Mohammad H. Morowvat and Younes GhasemiBackground: Scenedesmus obliquus, a green unicellular chlorophycean microalga, is well-established as a lipid and biomass production platform. The nutrient starvation strategy is considered as a robust platform for lipid production from different microalgal strains. Objective: The study aimed to analyse the influences of sulfur starvation on the growth rates, and also biomass and lipid production and composition in a naturally isolated strain of S. obliquus. Methods: The BG-11 culture medium was utilized for preservation and microalgal growth. To monitor the cell growth rates, two different methods, including direct cell counting and also dry cell weight measurement were used. The study was conducted in 28 days composed of two distinct growth modes as 10 days of sulfur-rich and 18 days of sulfur starved media. Results: The studied S. obliquus strain displayed higher lipid and carbohydrate production levels (34.68% and 34.02%) in sulfur starved medium compared with the sulfur-rich medium (25.84% and 29.08%). Nevertheless, a noticeable reduction (51.36%) in biomass contents and also in cell growth rates (63.36%) was observed during sulfur starvation. The investigated strain was composed of some important fatty acids with potential applications as food, feed and biodiesel. Conclusion: The observed results implied the possibility of the sulfur starvation strategy to increase lipid production in S. obliquus strain. Besides, the available data from recently published patents reveals the promising potential of the identified lipids from S. obliquus in this study for bioenergy production and other biotechnological purposes. 
 
- 
- 
- 
Spirulina maxima L-asparaginase: Immobilization, Antiviral and Antiproliferation ActivitiesMore LessAuthors: Hanaa H. Abd El-Baky and Gamal S. El-BarotyBackground: L-asparaginase (L-AsnA) enzyme has gained significant attention in the food, biocatalysts and pharmaceutics industry. It (L-AsnA) has been widely used in food processing industries as a promising acrylamide mitigating agent and as a therapeutic agent in the treatment of certain human cancers. Objective: Based on US Patent (4,433,054; 1984), L-asparaginase (L-AsnA) enzyme is immobilized by admixing the active enzyme on the polysaccharide to be in a gel form. The storage stability of immobilized L-AsnA enzyme and its anti-proliferation and antiviral activity were determined. Methods: In the present study, S. maxima was cultured at large scales (300 liter) for the production of enough extracellular L-asparaginase (L-AsnA) using modified (high N concentration) Zarrouk medium as we reported in a previous study. L-AsnA was immobilized on natural polymers, as agar cake beads, agarose pieces and gelatin blocks, in order to evaluate the efficiency of physical entrapment techniques. Anti-proliferation properties of L-AsnA against lung carcinoma A549, hepatocellular carcinoma Hep-G2 and prostate carcinoma PC3 human cancer cell lines were assessed by the MTT cell viability method. In addition, the antiviral activity against Coxsackie B3 (CSB3) Virus was assessed. Results: The highest L-AsnA immobilized activity and immobilization yield were achieved with agar cakes bead. The purified S. maxima L-AsnA showed good antiviral activity against Coxsackie B3 (CSB3) Virus in a dose-dependent manner with an IC50 value 17.03 μg/ml. The antiviral mode of action is presumably due to their capability of inhibiting attachment, blocking the adsorption and penetration event of the viral replication cycle with 89.24%, 72.78% and 72.78%, respectively. Also, S. maxima L-AsnA showed anti-proliferation effect against lung carcinoma A549, hepatocellular carcinoma Hep-G2 and prostate carcinoma PC3 human cancer cell lines, with an IC50 of 22.54, 24.65 and 56.61 μg/ml, respectively. Conclusion: It is interesting to favor L-asparaginase of S. maxima which showed antiviral activity and anti-proliferation effect against different types of human cell lines. Thus, S. maxima microalgae might be a good source for L-AsnA enzymes and can be immobilized on natural polymers. 
 
- 
Volumes & issues
- 
Volume 20 (2026)
- 
Volume 19 (2025)
- 
Volume 18 (2024)
- 
Volume 17 (2023)
- 
Volume 16 (2022)
- 
Volume 15 (2021)
- 
Volume 14 (2020)
- 
Volume 13 (2019)
- 
Volume 12 (2018)
- 
Volume 11 (2017)
- 
Volume 10 (2016)
- 
Volume 9 (2015)
- 
Volume 8 (2014)
- 
Volume 7 (2013)
- 
Volume 6 (2012)
- 
Volume 5 (2011)
- 
Volume 4 (2010)
- 
Volume 3 (2009)
- 
Volume 2 (2008)
- 
Volume 1 (2007)
Most Read This Month
 
Most Cited Most Cited RSS feed
- 
- 
Gluconic Acid ProductionAuthors: Savas Anastassiadis and Igor G. Morgunov
 
- 
- More Less
