Recent Patents on Biotechnology - Volume 14, Issue 1, 2020
Volume 14, Issue 1, 2020
-
-
Random Mutagenesis of Thermophilic Xylanase for Enhanced Stability and Efficiency Validated through Molecular Docking
Authors: Shweta Chauhan, Varun Jaiswal, Chandrika Attri and Amit SethBackground: Xylanases of thermophilic origin are more robust and stable and hence more suitable for industrial applications. The aim of the research was to develop a patent using a robust mutant exhibiting enhanced xylanase activity. The strain (Bacillus aestuarii SC-2014) subjected to mutagenesis is thermophilic in origin and hence it is envisioned that the enhancement of its catalytic potential will enhance its industrial applicability. Objective: The main aim was to develop a stable and vigorous mutant having higher xylanase activity and improved thermostability. Methods: The bacterial strain isolated from the Tattapani hot springs of Himachal Pradesh (India) was mutagenized by single separate exposure of Ethyl methane sulphonate (EMS) and N-methyl N-nitro N-nitrosoguanidine (MNNG). Results: A mutant library was generated and extensive screening led to the identification of the most potent mutant strain selected and designated as Bacillus sp. SC-2014 EMS200 (MTCC number 25046) which displayed not only enhanced xylanase activity and thermo stability but also appreciable genetic stability. This strain displayed a 3-fold increase in enzyme activity and simultaneously, a significant reduction in fermentation time from 72 h to 48 h was also observed. The xylanase gene from wild and mutant strain was cloned, sequenced and subjected to molecular docking. Two mutations H121D and S123T were present inside the binding pocket. Conclusion: Mutation H121D made the binding pocket more acidic and charged, thus enhancing the xylanase activity for mutant protein. Mutations also resulted in charged amino acids (Y99K and H121D) which were identified as a probable cause for enhancing the thermostability of mutant protein.
-
-
-
Biochemical Implications of Biotransformation of Some Toxic Floras Using Natural Local Enzyme Sources
Authors: Emmanuel N. Agomuo and Peter U. AmadiBackground: Recently, it has been established that simultaneous saccharification and fermentation is a potent technique for the detoxification of harmful plant materials. Objective: Following encouraging simultaneous medicinal applications of snail slime and yeast, we exploited their hydrolytic and fermentation potentials to prevent toxicities of the selected floras; Erythrodontium barteri (EB), bracken fern (BF), and crustose lichens (CL). The applicability of the saccharification process has been described in a patent (WO2005010193A2). Methods: The plants were bioprocessed using snail digestive juice and yeast slurry and their health effects were evaluated. Seventy rats were divided equally into groups, treated with single doses of aqueous extracts of the plants and their bioprocessed forms, and compared with control rats. Results: The plants showed very high antinutrients levels, which significantly reduced after SSF with enhanced flavonoids, alkaloids and phenols. Potential alterations of WBC differentials, RBC, liver and renal function markers indices were mitigated by bioprocessed extracts. MDA, SOD, GRase, XO and XDH levels in rats administered the bEB and CL were equivalent to the levels found for the control rats. Some bioprocessed plants produced unaltered insulin, ghrelin, and leptin levels. The bioprocessed extracts, when compared to the effects of unprocessed extracts, produced lower TNF-α, Caspase-3, and adiponectin levels and mitigated the potential suppression of Na+/K+-ATPase levels. Potential depletion of inhibin-B, testosterone, estrogen, and prolactin was mitigated after bioprocessing. Conclusion: This study, thus, validates the application of bioprocessing using snail digestive juice and yeast as an effective approach to reduce the potential toxicities of harmful plants.
-
-
-
Products of Dental Use Containing Copaiba Oil-resin: Technological Prospecting Based on Patents
Background: Copaiba oil-resin has been widely used and is especially found in neotropical regions, for which several pharmacological activities have been documented over the years. Prospective studies in intellectual property banks are important to increase competitiveness and thus generate new products in various research areas. Objective: A prospective study was carried out on patents of products containing copaiba oil-resin for dental use in intellectual property banks. Methods: The research was conducted with patent searches in six intellectual property banks of the world. Relevant information about the invention in the patent document was collected, processed and described. Results: The search found 9 patents using copaiba resin oil-resin in dental products. The National Institute of Industrial Property (INPI-Brazil) had the highest number of deposits (5), followed by Espacenet (2) and Free Patents (2). C. Langsdorffii was highlighted as the most widely used species in the products and deposits of vehicles in formulations (3). All the patents in the search are A61K code for medical, dental or hygienic purposes. Conclusion: Most of the found patents are related to the area of Microbiology, specifically with application in Cariology. Brazil is represented by the INPI and presented the highest number of patent applications when compared to other intellectual property banks.
-
-
-
Dose-response Evaluation of Propolis Dental Varnish in Children: A Randomized Control Study
Background: Early childhood caries is a sugar-dependent disease with multifactorial modulating factors affecting deciduous dentition. It is defined as the presence of at least one decayed tooth, absence of a tooth due to caries or the existence of a temporary restoration in a tooth in a child between zero and 71 months of age. No BRP varnish was found in intellectual property banks, therefore it was registered and deposited with patent number BR1020160190142. Objective: The objective of this study was to evaluate the dose-response concentration of alcoholic extract of Brazilian red propolis (BRP), in the form of dental varnish, against Streptococcus mutans (S. mutans) in children. Methods: Twenty-four children, aged between 36 and 71 months, of both genders and without caries, were selected to participate in this pilot study and grouped randomly into four groups to receive different concentrations of BRP varnish (1%, 2.5%, 5% and 10%). The varnish was applied to the surface of all second deciduous molars. The antimicrobial activity was observed in saliva, which was collected in two phases: before applying the BRP varnish and after use. Results: There was microbiological reduction of S. mutans in the oral cavity of the children in all the tested concentrations. The highest percentage reduction of S. mutans was observed at the concentration of 2.5% (P = 0.0443). Conclusion: The BRP extract in the form of dental varnish has antimicrobial activity against S. mutans and constitutes a possible alternative in the prevention of dental caries.
-
-
-
Recent Patents on Impact of Lipopeptide on the Biofilm Formation onto Titanium and Stainless Steel Surfaces
Background: Numerous causes of infection in arthroplasties are related to biofilm formation on implant surfaces. In order to circumvent this problem, new alternatives to prevent bacterial adhesion biosurfactants-based are emerging due to low toxicity, biodegradability and antimicrobial activity of several biosurfactants. We revised all patents relating to biosurfactants of applicability in orthopedic implants. Methods: This work aims to evaluate the capability of a lipopeptide produced by Bacillus subtilis ATCC 19659 isolates acting as inhibitors of the adhesion of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 onto titanium and stainless steel surfaces and its antimicrobial activity. Results: The adhesion of the strains to the stainless-steel surface was higher than that of titanium. Preconditioning of titanium and stainless-steel surfaces with 10 mg mL-1 lipopeptide reduced the adhesion of E. coli by up to 93% and the adhesion of S. aureus by up to 99.9%, suggesting the strong potential of lipopeptides in the control of orthopedic infections. The minimal inhibitory concentration and minimum bactericidal concentration were 10 and 240 μg mL-1 for E. coli and S. aureus, respectively. Conclusion: The lipopeptide produced by Bacillus subtilis ATCC 19659 presented high biotechnological application in human health against orthopedic implants infections.
-
-
-
Screening of Metal and Antibiotic Resistance in Beta-lactamase Producing Coliform Bacteria from Hospital Wastewater of Northern India
Authors: Manzar Alam, Mohd Imran and Syed S. AhmadAims: Our exploration work has uncovered the different anti-toxin/metal tolerance and patterns against the heavy metal resistant coliform microscopic organisms from the aquatic waste of the hospital. It might give new routes for the treatment of irresistible ailments particularly by coliform and critical for hazard evaluation as well as hazard management associated with the effluents of the hospital. Background: The higher use of pharmaceuticals, Radionuclides, and other antimicrobial solvents are the major source of metals in hospital wastewater. The hospital aquatic environment has a high content of both organic and inorganic matter with living organisms. Bacteria can resist an antimicrobial agent by producing extracellular enzymes that eliminate antibiotics and metal toxicity. In this study, we covered the existing patent literature in this area. New patents in the areas of topically applied antibiotics and agents that can potentiate the achievement of existing antibiotics may extend their helpful lifetime. Methods: Samples were collected from three different Departments of King George Medical University, Lucknow during the month of December to May (2015-16). Isolation and metal tolerance of coliform isolates were done on metal amended plates. The antibiotic sensitivity test was done by disc diffusion method. The plasmid DNA of bacterial isolates was done by the alkaline lysis method. The conjugation study was also performed in wastewater as well as a nutrient medium. Results: Maximum isolates demonstrated their MICs at 400, 800 and 1600 μg/ml against all the metals, respectively. The high level of resistance was observed against Methicillin (88.32%, 80.60%) followed by penicillin (75%, 76%), Cephradin (59.52%, 28.84%) and least to Gentamycine (1.92%, 5.76) in E. coli and Enterobacter, respectively. Of 70%, 78% E. coli and Enterobacter isolates produce beta-lactamase activity. Six amino acid residues namely, Glu104, Tyr105, Asn132, Asn170, Ala237, and Gly238 of the beta-lactamase were found in the common interaction with the selected drugs. Plasmid DNA size ranged between 48-58.8 kb. The conjugation experiments showed a higher transfer frequency (5.50-1 and 3.60-1) rate among antibiotics and metals tested. Conclusion: The finding of this study presents a potential health problem as the predominant coliform species have increasingly been associated with outbreaks of hospital infections. It is recommended that hospital waste must be properly treated before its release into the environment.
-
-
-
Trends in Biotechnology at the Turn of the Millennium
Authors: Masoud Mozafari, Tara Tariverdian and Ali BeynaghiBackground: The concept of biotechnology has gained wide popularity by the time. There is, of course, some anecdotal evidence as to what topics are currently considered the most prominent and how they can be compared to the common perception of which research topics were considered “trendy” years ago. Objective: A thorough search of exact time frames can help us quantitatively determine the evolution of prominent biotechnology research topics since the turn of the century. Methods: A text data mining approach has been followed to better identify the emerging trends and perspectives in biotechnology, taking a look back at how the focus of research and innovation in biotechnology has shifted, evolved and impacted the human race over the past three decades. Results: The extent of biotechnology today is vast, however, the most important newly developed research themes and patents largely influence human healthcare, affecting hundreds of millions of people who use grafts, devices, diagnostics, treatment and delivery systems. Even if biotechnology is very much focused on healthcare, there is also focus on other specialized concepts, such as biofuel, biocatalyst, food, agriculture and water purification, which have a strong influence on the research topics studied today. Conclusion: We are in the process of developing the practice of medicine through pioneering advances in biotechnology research and innovation. As companies continue to develop emerging treatment strategies (involving gene therapy, stem cells, nanomedicine and new drug delivery systems) that address significant unmet needs, future innovations in biotechnology research will bring exciting new advancements to help millions of more people worldwide.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less