Recent Patents on Biotechnology - Volume 13, Issue 3, 2019
Volume 13, Issue 3, 2019
-
-
Recent Patents Applications in Red Biotechnology: A Mini-Review
Background: The different fields of biotechnology can be classified by colors, as a "rainbow" methodology. In this sense, the red biotechnology, focused on the preservation of health, has been outstanding in helping to solve this challenge through the provision of technologies, including diagnostic kits, molecular diagnostics, vaccines, innovations in cancer research, therapeutic antibodies and stem cells. Objective: The main goal of this work is to highlight the different areas within the red Biotechnology. In this sense, we revised some patents regarding red biotechnology as examples to cover this subject. Methods: A literature search of patents was performed from the followings Patents Database: INPI, USPTO, Esp@cenet, WIPO and Google Patents. Results: Our analysis showed the following numbers from patents found: cancer research (8), diagnosis kit (9), vaccines (8), stem cells (9) and therapeutic antibodies (5), where the United States is the leader for most filled patents in Red Biotechnology. Conclusion: This mini-review has provided an update of some patents on Recent Patents in Red Biotechnology. As far as we know, this is the first mini-review report on Red Biotechnology based on patents.
-
-
-
Nucleic Acid Therapeutics in Huntington’s Disease
Authors: Kuljit Singh and Ipsita RoyBackground: Protein misfolding is a critical factor in the progression of a large number of neurodegenerative diseases. The incorrectly folded protein is prone to aggregation, leading to aberrant interaction with other cellular proteins, elevated oxidative stress, impaired cellular machinery, finally resulting in cell death. Due to its monogenic origin, Huntington’s disease (HD) is a poster child of protein misfolding neurodegenerative disorders. The presence of neuronal inclusions of mutant huntingtin N-terminal fragments, mainly in the cortex and striatum, is a neuropathological hallmark of HD. Inhibition of protein misfolding and aggregation has been attempted using a variety of conventional protein stabilizers. Methods: This review describes how, in recent times, nucleic acid therapeutics has emerged as a selective tool to downregulate the aberrant transcript and reduce expression of mutant huntingtin, thereby alleviating protein aggregation. Different strategies of use of nucleic acids, including antisense oligonucleotides, short inhibitory RNA sequences and aptamers have been discussed. The following patent databases were consulted: European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), Patent scope Search International and National Patent Collections (WIPO) and Google Patents. Results: Tools such as RNA interference (RNAi) and antisense oligonucleotides (ASOs) are potential therapeutic agents which target the post-transcriptional step, accelerating mRNA degradation and inhibiting the production of the mutant protein. These nucleic acid sequences not only target the elongated CAG triplet repeat translating to an expanded polyglutamine tract in the mutant protein, but have also been used to target single nucleotide polymorphisms associated with the mutant allele. The therapeutic sequences have been investigated in a number of cells and animal models of HD. One antisense sequence, with desirable safety properties, has recently shown downregulation of huntingtin protein in a limited clinical trial. RNA aptamers have also shown promising results in inhibiting protein aggregation in a yeast model of HD. Novel drug delivery techniques have been employed to overcome the blood brain barrier for the use of these therapeutic sequences. Conclusion: The selectivity and specificity imparted by nucleic acids, along with novel delivery techniques, make them hopeful candidates for the development of a curative strategy for HD.
-
-
-
Exploring the Patent Landscape of RNAi-based Innovation for Plant Breeding
Authors: Dario G. Frisio and Vera VenturaBackground: RNA interference (RNAi) is an innovative technique for plant improvement based on naturally occurring mechanisms which show great potential because of their high specificity and possibility to be applied through innovative methods of topical application in plants. This specific innovation sector is worth analysing from the economic perspective given the great potentiality of RNAi-based plants and products to support modern agriculture in reaching the goals for the improvement of agri-food chains global sustainability. This paper aims to evaluate the global landscape of RNAi innovation by analysing patent data as indicators of innovation output. Methods: We revised all patents relating to RNAi in plants based on a dataset of roughly seven thousand patent families. The analysis classified inventions according to a set of variables able to characterise the dynamics of innovation (i.e. public/private ownership, type of plants involved, main traits) while the use of concentration indices provided insights into the evolution of this sector. Results: Results revealed that RNAi is a technique with promising future applications, able to provide solutions to a great variety of agricultural issues and principally developed by the US and Chinese applicants, whereas European innovation capacity in this field appears to be limited. Conclusion: The innovation landscape of plant breeding is rapidly evolving and RNAi technique is probably going to play a major role in this field.
-
-
-
In silico Analysis of Different Signal Peptides for Secretory Production of Arginine Deiminase in Escherichia coli
Authors: Mahboubeh Zarei, Navid Nezafat, Mohammad H. Morowvat, Mohsen Ektefaie and Younes GhasemiBackground: Secretory production of recombinant protein in bacterial hosts fulfills several advantages. Selecting an appropriate secretory signal peptide is a critical step in secretory production of different protein. Several patents report the usage of signal peptides for secretory production of recombinant proteins in E. coli. In silico identification of suitable signal peptides is a reliable and cost-effective alternative to experimental approaches. Objective: This study was aimed to predict best signal peptides for the secretory production of recombinant arginine deiminase in E. coli. Methods: In this study, 30 different signal peptide sequences were retrieved from database. The signal peptide probability, location of cleavage sites, and n, h and c regions were predicted by SignalP 4.1 and Phobius servers. After purging the 30 predicted secretory signal peptides, TorT, bla, NrfA, TolB, PapC, PldA, Lpp were removed. Several physicochemical properties of the remaining potential SPs were determined by ProtParam, PROSO II, and SOLpro servers for theoretically selecting the best candidates. Results and Conclusion: Based on physicochemical properties, the signal peptides of OmpC, OmpF, and DsbA were identified respectively as the promising candidates for efficient secretory production of arginine deiminase in E. coli. Although the computational approach has established itself as a basis of modern biotechnology, the experimental study is necessary to validate its results. The criteria used in this study could be applied to other targets for recombination processes.
-
-
-
Ammonia Sensing and Cytotoxicity of the Biosynthesized Silver Nanoparticle by Arabic Gum (AG)
Background: The green synthesizing procedure of Silver nanoparticles (AgNPs) has been performed through the usage of a natural polysaccharide; Arabic gum (AG) as a stabilizing/ capping agent. For characterization of AgNPs, TEM, particle size analyzer and UV-Vis were used. Methods: The aim of our project was to identify biosynthesized AgNPs for sensing ammonia and to explore its toxicity on Neuro-2A cells. We also reviewed the patents for biosynthesized AgNO3 and ammonia sensing. The optimal conditions for the synthesis of AgNPs in AG consist of utilizing (0.1g) AG in dH2O (70 ml), 10 ml of 1 mM silver solution and 0.1 mM (AA) at 70°C stirring for 30 minutes. The AgNPs cytotoxicity was evaluated on Neuro-2A cells; consequently, ammonia was sensed with the lowest possible concentration of 10-6. Results: Particle size analyzer displayed the mean diameter of about 70 nm for the sphericalshaped Ag-NPs. UV–Vis revealed that the prepared AgNPs were ammonia sensitive in solution as the concentration of ammonia was increased. The cytotoxicity of AgNPs indicated lower Cell viability at higher concentrations of the AG-capped AgNPs. Conclusion: By synthesis of AgNPs in GA by using AA, we successfully prepared a sensor to diagnose ammonia in a cell and sensing its level at concentrations of 10-6 M. In this study, no therapeutic application has been shown, but this method could be utilized industrially for therapeutic purposes in the future.
-
-
-
Potential Angiotensin Converting Enzyme Inhibitors from Moringa oleifera
Authors: Huma Khan, Varun Jaiswal, Saurabh Kulshreshtha and Azhar KhanBackground: Hypertension is the chronic medical condition and it affected billions of people worldwide. Natural medicines are the main alternatives to treatment for a majority of people suffering from hypertension. Niazicin-A, Niazimin-A, and Niaziminin-B compounds from Moringa oleifera ethanolic leave extract were reported to have potent antihypertensive activity. Objective: These compounds were targeted with Angiotensin-converting enzyme [ACE] which is one of the main regulatory enzymes of the renin-angiotensin system. Methods: Protein-ligand docking of these compounds with [ACE] [both domain N and C] was conceded out through Autodock vina and visualization was done by chimera. Pharmacokinetics study of these compounds was predicted by ADME-Toxicity Prediction. Results: Niazicin-A, Niazimin-A, and Niaziminin-B showed high binding affinity with ACE and partially blocked the active sites of the enzyme. Niazicin-A, Niazimin-A and Niaziminin-B showed the estimated free binding energy of -7.6kcal/mol kcal/mol, -8.8kcal/mol and -8.0kcal/mol respectively with C-domain of ACE and -7.9kcal/mol, -8.5kcal/mol and -7.7kcal/mol respectively with N-domain of ACE. The compounds showed better binding energy with angiotensinconverting enzyme in comparison to Captopril -5.5kcal/mol and -5.6kcal/mol and Enalapril [standard] -8.4kcal/mol and -7.5kcal/mol with C and N domain, respectively. Conclusion: Computationally, the selected bioactive molecules have shown better binding energy to known standard drugs which have been already known for inhibition of ACE and can further act as a pharmacophore for in vitro and in vivo studies in the development of alternative medicine.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less