Recent Patents on Biotechnology - Volume 13, Issue 1, 2019
Volume 13, Issue 1, 2019
-
-
Evolutionary Trends in Industrial Production of α-amylase
Authors: Satya E. Jujjavarapu and Swasti DhagatBackground: Amylase catalyzes the breakdown of long-chain carbohydrates to yield maltotriose, maltose, glucose and dextrin as end products. It is present in mammalian saliva and helps in digestion. Objective: Their applications in biotechnology include starch processing, biofuel, food, paper, textile and detergent industries, bioremediation of environmental pollutants and in clinical and medical applications. The commercial microbial strains for production of α-amylase are Bacillus subtilis, B. licheniformis, B. amyloliquefaciens and Aspergillus oryzae. Industrial production of enzymes requires high productivity and cannot use wild-type strains for enzyme production. The yield of enzyme from bacteria can be increased by varying the physiological and genetic properties of strains. Results: The genetic properties of a bacterium can be improved by enhancing the expression levels of the gene and secretion of the enzyme outside the cells, thereby improving the productivity by preventing degradation of enzymes. Overall, the strain for specific productivity should have the maximum ability for synthesis and secretion of an enzyme of interest. Genetic manipulation of α-amylase can also be used for the production of enzymes with different properties, for example, by recombinant DNA technology. Conclusion: This review summarizes different techniques in the production of recombinant α- amylases along with the patents in this arena. The washing out of enzymes in reactions became a limitation in utilization of these enzymes in industries and hence immobilization of these enzymes becomes important. This paper also discusses the immobilization techniques for used α-amylases.
-
-
-
Mode of Action, Properties, Production, and Application of Laccase: A Review
Authors: Naveen Patel, Shraddha Shahane, Shivam, Ria Majumdar and Umesh MishraBackground and Source: Laccase belongs to the blue multi-copper oxidases, which are widely distributed in fungi and higher plants. It is present in Ascomycetes, Deuteromycetes, and Basidiomycetes and found abundantly in white-rot fungi. Applications: Laccase enzymes because of their potential have acquired more importance and application in the area of textile, pulp and paper, and food industry. Recently, it is being used in developing biosensors for detection and removal of toxic pollutants, designing of biofuel cells and medical diagnostics tool. Laccase is also being used as a bioremediation agent as they have been found potent enough in cleaning up herbicides pesticides and certain explosives in soil. Because of having the ability to oxidize phenolic, non-phenolic lignin-related compounds and highly fractious environmental pollutants, laccases have drawn the attention of researchers in the last few decades. Commercially, laccases have been used to determine the difference between codeine and morphine, produce ethanol and are also being employed in de-lignify woody tissues. We have revised patents related to applicability of laccases. We have revised all the patents related to its wide applicability. Conclusion: For fulfillment of these wide applications, one of the major concerns is to develop a system for efficient production of these enzymes at a broad scale. Research in the field of laccases has been accelerated because of its wide diversity, utility, and enzymology. This paper deals with recent trends in implementation of the laccases in all practical possibilities with the help of optimizing various parameters and techniques which are responsible for mass production of the enzyme in industries.
-
-
-
Isolation, Purification, Characterisation and Application of L-ASNase: A Review
Authors: Tania Paul, Abhijit Mondal and Tarun K. BandyopadhyayBackground: L-ASNase (L-asparagine aminohydrolase EC 3.5.1.1) is used for the conversion of L-asparagine to L-aspartic acid and ammonia and also it was found as an agent of chemotherapeutic property according to recent patents. It is known as an anti-cancer agent and recently it has received an immense attention. Various microorganisms have the ability to secrete the L-ASNase. It is famous world-wide as anti-tumor medicine for acute lymphoblastic leukemia and lymphosarcoma. L-ASNase helps in deamination of Asparagine and Glutamine. Source: L-ASNase mainly found in two bacterial sources; Escherichia coli and Erwinia carotovora. Isolation from plants: Endophytes were also a great source of L-ASNase. It was isolated from four types of plants named as; C. citratus, O. diffusa, M. koengii, and also P. bleo. Applications: L-ASNase is used as a potential anti-tumor medicine. It plays a very much essential role for the growth of tumor cells. Tumor cells require a lot of asparagine for their growth. But ASNase converts to aspartate and ammonia from asparagine. So the tumor cell does not proliferate and fails to survive. The L-ASNase is used as the medicine for the major type of cancer like acute lymphocytic leukemia (ALL), brain. It also used as a medicine for central nervous system (CNS) tumors, and also for neuroblastoma. Two types of L-ASNase have been found. Conclusion: L-ASNase becomes a powerful anti-tumor medicine and researchers should develop a potent strain of asparaginase which can produce asparaginase in the industrial level. It is also used in the pharmaceutical industry and food industry on a broader scale.
-
-
-
Lipases: Sources, Production, Purification, and Applications
Authors: Naveen Patel, Dhananjai Rai, Shivam, Shraddha Shahane and Umesh MishraBackground and Sources: Lipase enzyme is a naturally occurring enzyme found in the stomach and pancreatic juice. Its function is to digest fats and lipids, helping to maintain correct gallbladder function. Lipase is the one such widely used and versatile enzyme. These enzymes are obtained from animals, plants and as well as from several microorganisms and are sufficiently stable. These are considered as nature’s catalysts, but commercially, only microbial lipases are being used significantly. Applications: They found enormous application in the industries of fat and oil processing, oleochemical industry, food industry, detergents, pulp and paper industry, detergents, environment management, tea processing, biosensors and cosmetics and perfumery. Various recent patents related to lipases have been revised in this review. Conclusion: Lipases are very peculiar as they have the ability to hydrolyse fats into fatty acids and glycerols at the water-lipid interface and can reverse the reaction in non-aqueous media. This natural ability makes it the most widely used enzyme in various industrial applications. This article deals with the immense versatility of lipase enzymes along with the recent advancements done in the various fields related to their purification and mass production in industries.
-
-
-
Computational Fluid Dynamics (CFD) Simulation of Cross-flow Mode Operation of Membrane for Downstream Processing
Authors: Anirban Banik, Tarun K. Bandyopadhyay and Sushant Kumar BiswalBackground: Membrane filtration process produced good quality of permeate flux due to which it is used in different industries like dairy, pharmaceutical, sugar, starch and sweetener industry, bioseparation, purification of biomedical materials, and downstream polishing etc. The cross-flow mode of operation has also been used to improve the quality of the Rubber Industrial effluent of Tripura, India. Method: The Computational Fluid Dynamics (CFD) simulation of the cross-flow membrane is done by using ANSYS Fluent 6.3. The meshing of the geometry of the membrane is done by Gambit 2.4.6 and a grid size of 100674, the number of faces is 151651 and number of nodes being 50978 has been selected for the simulation purpose from the grid independence test. We have revised and included all patents in the manuscripts related to the membrane filtration unit. Results: Single phase Pressure-Velocity coupled Simple Algorithm and laminar model is used for the simulation of the developed model and Fluent 6.3 used for the prediction of pressure, pressure drop, flow phenomena, wall shear stress and shear strain rate inside the module is studied for cross flow membrane. Conclusion: From the study, it has been found that CFD simulated results hold good agreement with the experimental values.
-
-
-
Optimization of Process Parameters for Production of Pectinase using Bacillus Subtilis MF447840.1
Authors: Ram B. Mahto, Mukesh Yadav, Soumya Sasmal and Biswnath BhuniaBackground: Pectinase enzyme has immense industrial prospects in the food and beverage industries. Objective: In our investigation, we find out the optimum process parameters suitable for better pectinase generation by Bacillus subtilis MF447840.1 using submerged fermentation. Method: 2% (OD600 nm = 0.2) of pure Bacillus subtilis MF447840.1 bacterial culture was inoculated in sterile product production media. The production media components used for this study were 1 g/l of pectin, 2 g/l of (NH4)2SO4, 1 g/l of NaCl, 0.25 g/l of K2HPO4, 0.25 g/l of KH2PO4 and 1 g/l of MgSO4 for pectinase generation. We reviewed all recent patents on pectinase production and utilization. The various process parameters were observed by changing one variable time method. Results: The optimum fermentation condition of different parameters was noticed to be 5% inoculums, 25% volume ratio, temperature (37°C), pH (7.4) and agitation rate (120 rpm) following 4 days incubation. Conclusion: Maximum pectinase generation was noticed as 345 ± 12.35 U following 4 days incubation.
-
-
-
CFD and Optimization Study of Frictional Pressure Drop Through Bends
Authors: Suman Debnath, Anirban Banik, Tarun K. Bandyopadhyay and Apu Kumar SahaBackground: The non-Newtonian pseudoplastic liquid flow through different types of the bend is more complicated compared to the simple straight pipe as the bends are associated with various curve geometry. Bends have wide application in bioengineering, biotechnology and biomedical such as study biofluids, blood rheology study, the design of medical equipment like equipment measuring the cholesterol etc. Method: The papers deal with the estimation of loss coefficient and frictional pressure drop of Newtonian and non-Newtonian pseudoplastic fluid flow through the different bend of 0.0127 m diameter pipe geometry using commercially available CFD software fluent 6.3. We revised all patents relating to the pipe flow through different types of bend. The present study also deals with the efficient application of Genetic Algorithm (GA) for optimization of frictional pressure drop. Laminar Non-Newtonian Power law model is used for Sodium Carboxy Methyl Cellulose (SCMC) solution to solve the continuity and the momentum equations numerically. Generalized input-output correlation has been developed by Gene Expression Programming (GEP) using Matlab. Results: The above-mentioned algorithm is used to predict and optimize the pressure drop. It has been found that, the process exhibit the minimum pressure drop across the bend under optimum condition (Angle = 133.160, Concentration = 0.2 Kg/m3 and velocity = 0.53 m/s). The effect of flow rate, bend angle, fluid behaviour on static pressure and pressure drop has also been investigated. Conclusion: From the study, it can be concluded that the developed GA model has a good agreement with the CFD model. The software predicted data might be used to solve various industrial problems and also to design different equipment.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less