Skip to content
2000
image of Evaluation of the Use of Different Oils and Emulsifiers in Oil-in-Water (O/W) Nanoemulsions

Abstract

Introduction

Nanoemulsions (NEs) are a biphasic systems formed by two immiscible liquids: (1) oil-in-water or (2) water-in-oil emulsions. These systems exhibit unique physicochemical properties due to their small particle size, making them more versatile compared to other emulsion systems. Thus, this research aimed to produce and evaluate oil-in-water nanoemulsions.

Methods

NE’s were prepared using Squalene, grape seed, and avocado oils, combined with soy lecithin or soy phosphatidylcholine as emulsifiers. The selection of oils considered both regulatory aspects and patent restrictions. Formulations were produced by microfluidization, and their physicochemical properties, such as particle size, polydispersity index, and zeta potential, were assessed at day one (D0) and day 7 (D7), under storage at 4°C, 25°C, and 40°C.

Results

The nanoemulsions produced with soy phosphatidylcholine and vegetable oils exhibited good preliminary stability, due to their small particle size. In contrast, formulations using soy lecithin as the emulsifier did not show favorable results, especially the one with grape seed oil, which showed a large particle diameter. However, none of these formulations exhibited cellular cytotoxicity.

Discussion

Emulsifier selection had a strong impact on NEs characteristics, with Soy-PC producing smaller and more uniform particles compared to soy lecithin. All NEs showed good biocompatibility in fibroblasts, indicating their safety.

Conclusion

Among the formulations, the one with phosphatidylcholine demonstrated a safer and more reliable stability profile, making it a promising candidate for application in the pharmaceutical and cosmetics industries.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083398992251002045443
2025-10-17
2025-12-27
Loading full text...

Full text loading...

References

  1. Ma H.L. Varanda L.C. Perussi J.R. Carrilho E. Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. J Photochem Photobiol B 2021 223 112303 10.1016/j.jphotobiol.2021.112303 34509718
    [Google Scholar]
  2. Kumar M. Bishnoi R.S. Shukla A.K. Jain C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev Nutr Food Sci 2019 24 3 225 234 10.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  3. ElKholy A. Nanotechnology based drug delivery system and its applications. Egypt J Chem Environ Health 2017 3 2 47 53 10.21608/ejceh.2017.245782
    [Google Scholar]
  4. Singh Y. Meher J.G. Raval K. Khan F.A. Chaurasia M. Jain N.K. Chourasia M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017 252 28 49 10.1016/j.jconrel.2017.03.008 28279798
    [Google Scholar]
  5. Ashaolu T.J. Nanoemulsions for health, food, and cosmetics: A review. Environ Chem Lett 2021 19 4 3381 3395 10.1007/s10311‑021‑01216‑9 33746662
    [Google Scholar]
  6. Sheth T. Seshadri S. Prileszky T. Helgeson M.E. Multiple nanoemulsions. Nat Rev Mater 2020 5 3 214 228 10.1038/s41578‑019‑0161‑9
    [Google Scholar]
  7. Liang C-X. Qi D-L. Zhang L-N. Lu P. Liu Z-D. Preparation and evaluation of a water-in-oil nanoemulsion drug delivery system loaded with salidroside. Chin J Nat Med 2021 19 3 231 240 10.1016/S1875‑5364(21)60025‑0
    [Google Scholar]
  8. Valdivia-Olivares R.Y. Martinez-González E.A. Montenegro G. Bridi R. Alvarez-Figueroa M.J. González-Aramundiz J.V. Innovative multiple nanoemulsion (W/O/W) based on Chilean honeybee pollen improves their permeability, antioxidant and antibacterial activity. Food Res Int 2023 168 112767 10.1016/j.foodres.2023.112767 37120217
    [Google Scholar]
  9. Lewińska A. Optimizing the process design of oil-in-water nanoemulsion for delivering poorly soluble cannabidiol oil. Processes 2021 9 7 1180 10.3390/pr9071180
    [Google Scholar]
  10. McClements D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012 8 6 1719 1729 10.1039/C2SM06903B
    [Google Scholar]
  11. McClements D.J. Jafari S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv Colloid Interface Sci 2018 251 55 79 10.1016/j.cis.2017.12.001 29248154
    [Google Scholar]
  12. Wilson R.J. Li Y. Yang G. Zhao C.X. Nanoemulsions for drug delivery. Particuology 2022 64 85 97 10.1016/j.partic.2021.05.009
    [Google Scholar]
  13. Mahato R. Nanoemulsion as targeted drug delivery system for cancer therapeutics. J Pharm Sci Pharmacol 2017 3 2 83 97 10.1166/jpsp.2017.1082
    [Google Scholar]
  14. Pandey P. Gulati N. Makhija M. Purohit D. Dureja H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotechnol 2020 14 4 276 293 10.2174/1872210514666200604145755 32496999
    [Google Scholar]
  15. Choradiya B.R. Patil S.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021 339 116751 10.1016/j.molliq.2021.116751
    [Google Scholar]
  16. Ammar H.O. Salama H.A. Ghorab M. Mahmoud A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 2009 10 3 808 819 10.1208/s12249‑009‑9268‑4 19536653
    [Google Scholar]
  17. Tau J. Passerini M.S. del Papa M. Aguilar A. Berra A. A novel ophthalmic latanoprost 0.005% nanoemulsion: A cytotoxicity study. Graefes Arch Clin Exp Ophthalmol 2022 260 6 1941 1946 10.1007/s00417‑021‑05536‑y 35015115
    [Google Scholar]
  18. Nogueira K.A.B. Fernandes L.C.C. Martins J.R.P. de Oliveira A.S. Araujo T.G. Junior J. da S. Eloy J.O. Petrilli R. Topical and Transdermal Drug Delivery Systems: Applications and Future Prospects Apple Academic Press 2023
    [Google Scholar]
  19. Abolmaali S.S. Tamaddon A.M. Farvadi F.S. Daneshamuz S. Moghimi H. Pharmaceutical nanoemulsions and their potential topical and transdermal applications. Iran J Pharm Sci 2011 7 3 139 150
    [Google Scholar]
  20. Zheng Y. Ouyang W.Q. Wei Y.P. Syed S. Hao C.S. Wang B.Z. Shang Y.H. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study. Int J Nanomedicine 2016 11 5971 5987 10.2147/IJN.S119286 27877042
    [Google Scholar]
  21. Sood S. Jain K. Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces 2014 113 330 337 10.1016/j.colsurfb.2013.09.030 24121076
    [Google Scholar]
  22. Mahajan H.S. Mahajan M.S. Nerkar P.P. Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2014 21 2 148 154 10.3109/10717544.2013.838014 24128122
    [Google Scholar]
  23. Chatterjee B. Gorain B. Mohananaidu K. Sengupta P. Mandal U.K. Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019 565 258 268 10.1016/j.ijpharm.2019.05.032 31095983
    [Google Scholar]
  24. Choudhury H. Gorain B. Chatterjee B. Mandal U.K. Sengupta P. Tekade R.K. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des 2017 23 17 2504 2531 10.2174/1381612822666161201143600 27908273
    [Google Scholar]
  25. Yang J. Li Y. Sun J. Zou H. Sun Y. Luo J. Xie Q. A R. Wang H. Li X. Wang K. Yang L. Ma T. Wu L. Sun X. An osimertinib-perfluorocarbon nanoemulsion with excellent targeted therapeutic efficacy in non-small cell lung cancer: Achieving intratracheal and intravenous administration. ACS Nano 2022 16 8 12590 12605 10.1021/acsnano.2c04159 35863049
    [Google Scholar]
  26. Karami Z. Khoshkam M. Hamidi M. Optimization of olive oil-based nanoemulsion preparation for intravenous drug delivery. Drug Res 2019 69 5 256 264 10.1055/a‑0654‑4867 30086568
    [Google Scholar]
  27. Donoso-Meneses D. Figueroa-Valdés A.I. Khoury M. Alcayaga-Miranda F. Oral administration as a potential alternative for the delivery of small extracellular vesicles. Pharmaceutics 2023 15 3 716 10.3390/pharmaceutics15030716 36986578
    [Google Scholar]
  28. Nguyen V.H. Thuy V.N. Van T.V. Dao A.H. Lee B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano 2022 8 100064 10.1016/j.onano.2022.100064
    [Google Scholar]
  29. Jaiswal M. Dudhe R. Sharma P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015 5 2 123 127 10.1007/s13205‑014‑0214‑0 28324579
    [Google Scholar]
  30. Mason T.G. Wilking J.N. Meleson K. Chang C.B. Graves S.M. Nanoemulsions: Formation, structure, and physical properties. J Phys Condens Matter 2006 18 41 R635 R666 10.1088/0953‑8984/18/41/R01
    [Google Scholar]
  31. Kale S.N. Deore S.L. Emulsion micro emulsion and nano emulsion: A review. Syst Rev Pharm 2016 8 1 39 47 10.5530/srp.2017.1.8
    [Google Scholar]
  32. Rolland M. Truong N.P. Parkatzidis K. Pilkington E.H. Torzynski A.L. Style R.W. Dufresne E.R. Anastasaki A. Shape-controlled nanoparticles from a low-energy nanoemulsion. JACS Au 2021 1 11 1975 1986 10.1021/jacsau.1c00321 34841413
    [Google Scholar]
  33. Gupta P.K. Pandit J.K. Kumar A. Swaroop P. Gupta S. Pharmaceutical nano-technology novel nanoemulsion – High energy emulsification preparation, evaluation and application. Pharma Res 2010 3 3 117 138
    [Google Scholar]
  34. Sadeq Z.A. Review on nanoemulsion: Preparation and evaluation. Int J Drug Deliv Technol 2020 10 1 187 189 10.25258/ijddt.10.1.33
    [Google Scholar]
  35. Latif M.S. Nawaz A. Asmari M. Uddin J. Ullah H. Ahmad S. Formulation development and in vitro/in vivo characterization of methotrexate-loaded nanoemulsion gel formulations for enhanced topical delivery. Gels 2022 9 1 3 10.3390/gels9010003 36661771
    [Google Scholar]
  36. Schmidt S. Nguyen A.T. Vu H.Q. Tran N.N. Sareela M. Fisk I. Hessel V. Microfluidic spontaneous emulsification for generation of o/w nanoemulsions—opportunity for in‐space manufacturing. Adv Healthc Mater 2023 12 23 2203363 10.1002/adhm.202203363 37039561
    [Google Scholar]
  37. Villalobos-Castillejos F. Granillo-Guerrero V.G. Leyva-Daniel D.E. Alamilla-Beltrán L. Gutiérrez-López G.F. Monroy-Villagrana A. Jafari S.M. Fabrication of Nanoemulsions by Microfluidization. Nanoemulsions: Formulation, Applications, and Characterization Academic Press 2018 10.1016/B978‑0‑12‑811838‑2.00008‑4
    [Google Scholar]
  38. Elveflow. Microfluidics: A general overview of microfluidics. Available from: https://www.elveflow.com/microfluidic-reviews/generalmicrofluidics/a-general-overview-of-microfluidics. 2020
    [Google Scholar]
  39. Bai L. McClements D.J. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. J Colloid Interface Sci 2016 466 206 212 10.1016/j.jcis.2015.12.039 26724703
    [Google Scholar]
  40. de Aguiar A.C. de Paula J.T. Mundo J.L.M. Martínez J. McClements D.J. Influence of type of natural emulsifier and microfluidization conditions on Capsicum oleoresin nanoemulsions properties and stability. J Food Process Eng 2021 44 4 13660 10.1111/jfpe.13660
    [Google Scholar]
  41. Lin X. Sheng Y. Zhang X. Li Z. Yang Y. Wu J. Su Z. Ma G. Zhang S. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J Control Release 2022 346 380 391 10.1016/j.jconrel.2022.04.036 35483639
    [Google Scholar]
  42. Zeng X. Sun H. Ye Y. Luo X. Cai D. Yang Y. Chen T. Sun C. Zhang S. Zeng H. Evaluating the immune response of a nanoemulsion adjuvant vaccine against methicillin-resistant Staphylococcus aureus (MRSA) infection. J Vis Exp 2023 2023 199 10.3791/65152 37677037
    [Google Scholar]
  43. O’Konek J.J. Landers J.J. Janczak K.W. Lindsey H.K. Mondrusov A.M. Totten T.D. Baker J.R. Intranasal nanoemulsion vaccine confers long‐lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy 2020 75 4 872 881 10.1111/all.14064 31557317
    [Google Scholar]
  44. Tateno M. Stone B.J. Srodulski S.J. Reedy S. Gawriluk T.R. Chambers T.M. Woodward J. Chappell J. Kempinski C.F. Synthetic Biology-derived triterpenes as efficacious immunomodulating adjuvants. Sci Rep 2020 10 1 17090 10.1038/s41598‑020‑73868‑6 33051497
    [Google Scholar]
  45. Fox C.B. Van Hoeven N. Granger B. Lin S. Guderian J.A. Hartwig A. Marlenee N. Bowen R.A. Soultanov V. Carter D. Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. Phytomedicine 2019 64 152927 10.1016/j.phymed.2019.152927 31465981
    [Google Scholar]
  46. Lodaya R.N. Brito L.A. Wu T.Y.H. Miller A.T. Otten G.R. Singh M. O’Hagan D.T. Stable nanoemulsions for the delivery of small molecule immune potentiators. J Pharm Sci 2018 107 9 2310 2314 10.1016/j.xphs.2018.05.012 29883663
    [Google Scholar]
  47. Freund J. Casals J. Hosmer E.P. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 1937 37 3 10.3181/00379727‑37‑9625
    [Google Scholar]
  48. O’Hagan D.T. Ott G.S. Nest G.V. Rappuoli R. Giudice G.D. The history of MF59 ® adjuvant: A phoenix that arose from the ashes. Expert Rev Vaccines 2013 12 1 13 30 10.1586/erv.12.140 23256736
    [Google Scholar]
  49. Shimizu N. Ito J. Kato S. Eitsuka T. Miyazawa T. Nakagawa K. Significance of squalene in rice bran oil and perspectives on squalene oxidation. J Nutr Sci Vitaminol 2019 65 Suppl. S62 S66 10.3177/jnsv.65.S62 31619649
    [Google Scholar]
  50. Cárdeno A. Aparicio-Soto M. Montserrat-de la Paz S. Bermudez B. Muriana F.J.G. Alarcón-de-la-Lastra C. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. J Funct Foods 2015 14 779 790 10.1016/j.jff.2015.03.009
    [Google Scholar]
  51. Krasnova O.A. Minaychev V.V. Akatov V.S. Fadeev R.S. Senotov A.S. Kobyakova M.I. Lomovskaya Y.V. Lomovskiy A.I. Zvyagina A.I. Krasnov K.S. Shatalin Y.V. Penkov N.V. Zhalimov V.K. Molchanov M.V. Palikova Y.A. Murashev A.N. Maevsky E.I. Fadeeva I.S. Improving the stability and effectiveness of immunotropic squalene nanoemulsion by adding turpentine oil. Biomolecules 2023 13 7 1053 10.3390/biom13071053 37509089
    [Google Scholar]
  52. Beltrán G. Bucheli M.E. Aguilera M.P. Belaj A. Jimenez A. Squalene in virgin olive oil: Screening of variability in olive cultivars. Eur J Lipid Sci Technol 2016 118 8 1250 1253 10.1002/ejlt.201500295
    [Google Scholar]
  53. Emília Juan M. Wenzel U. Daniel H. Planas J.M. Cancer Chemopreventive Activity of Hydroxytyrosol: A Natural Antioxidant from Olives and Olive Oil. Olives and Olive Oil in Health and Disease Prevention Cambridge, Massachusetts Academic Press 2010 1295 1300
    [Google Scholar]
  54. Rao C. Newmark H.L. Reddy B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis 1998 19 2 287 290 10.1093/carcin/19.2.287 9498278
    [Google Scholar]
  55. Smith T.J. Squalene: Potential chemopreventive agent. Expert Opin Investig Drugs 2000 9 8 1841 1848 10.1517/13543784.9.8.1841 11060781
    [Google Scholar]
  56. Maldonado A. Riquelme N. Muñoz-Fariña O. García O. Arancibia C. Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers. Lebensm Wiss Technol 2023 174 114419 10.1016/j.lwt.2022.114419
    [Google Scholar]
  57. Huan Z. Yiwen J. Xiaowei C. Shangde S. Separation and purification of squalene from rice oil deodorizer distillate. J Henan Univ Technol: Nat Sci Ed 2022 43 6 10.16433/j.1673‑2383.2022.06.004
    [Google Scholar]
  58. Abd Rashid S.N.A. Leong H.Y. Cheng K.K. Yaakob H. Abdul Latiff N. Squalene rich virgin palm oil by microwave-assisted enzyme aqueous extraction from palm mesocarp. Biocatal Agric Biotechnol 2023 47 102568 10.1016/j.bcab.2022.102568
    [Google Scholar]
  59. Ratusz K. Wirkowska M. Characterization of seeds and lipids of amaranthus. Oilseed Crops 2006 27 243 250
    [Google Scholar]
  60. Wang Y. Cen C. Chen J. Zhou C. Fu L. Nano-emulsification improves physical properties and bioactivities of litsea cubeba essential oil. Lebensm Wiss Technol 2021 137 110361 10.1016/j.lwt.2020.110361
    [Google Scholar]
  61. Handayani F.S. Nugroho B.H. Munawiroh S.Z. Optimization of low energy nanoemulsion of Grape seed oil formulation using D-Optimal Mixture Design (DMD) Optimasi Formulasi Nanoemulsi Minyak Biji Anggur Energi Rendah dengan D-Optimal Mixture Design (DMD). J Ilmiah Farmasi 2018 14 1 17 34
    [Google Scholar]
  62. Arianto A. Lie D.Y.L. Sumaiyah S. Bangun H.B. Preparation and evaluation of nanoemulgels containing a combination of grape seed oil and anisotriazine as sunscreen. Open Access Maced J Med Sci 2020 8 B 994 999 10.3889/oamjms.2020.5293
    [Google Scholar]
  63. Ameur A. Bensid A. Ozogul F. Ucar Y. Durmus M. Kulawik P. Boudjenah-Haroun S. Application of oil‐in‐water nanoemulsions based on grape and cinnamon essential oils for shelf‐life extension of chilled flathead mullet fillets. J Sci Food Agric 2022 102 1 105 112 10.1002/jsfa.11336 34048077
    [Google Scholar]
  64. Davidov-Pardo G. McClements D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 2015 167 205 212 10.1016/j.foodchem.2014.06.082 25148980
    [Google Scholar]
  65. Riquelme N. Zúñiga R.N. Arancibia C. Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. Lebensm Wiss Technol 2019 111 760 766 10.1016/j.lwt.2019.05.067
    [Google Scholar]
  66. Kiattisin K. Srithongchai P. Jaiyong W. Boonpisuttinant K. Ruksiriwanich W. Jantrawut P. Sainakham M. Preparation and characterization of ultrasound-assisted nanoemulsions containing natural oil for anti-aging effect. J Agric Food Res 2024 15 101004 10.1016/j.jafr.2024.101004
    [Google Scholar]
  67. Arancibia C. Riquelme N. Zúñiga R. Matiacevich S. Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innov Food Sci Emerg Technol 2017 44 159 166 10.1016/j.ifset.2017.06.009
    [Google Scholar]
  68. Riquelme N. Sepúlveda C. Arancibia C. Influence of ternary emulsifier mixtures on oxidative stability of nanoemulsions based on avocado oil. Foods 2020 9 1 42 10.3390/foods9010042 31947752
    [Google Scholar]
  69. Hassan M. Moneim S.A. Mahmoud E.A. Mohamed D.A. Antioxidant, anti-cancer and anti-arthritic activities of acetogenin-rich extract of avocado pulp. Egypt J Chem 2022 65 4 107 118 10.21608/ejchem.2021.90308.4309
    [Google Scholar]
  70. Flores M. Saravia C. Vergara C. Avila F. Valdés H. Ortiz-Viedma J. Avocado oil: Characteristics, properties, and applications. Molecules 2019 24 11 2172 10.3390/molecules24112172 31185591
    [Google Scholar]
  71. Carvajal-Zarrabal O. Nolasco-Hipolito C. Aguilar-Uscanga M.G. Melo-Santiesteban G. Hayward-Jones P.M. Barradas-Dermitz D.M. Avocado oil supplementation modifies cardiovascular risk profile markers in a rat model of sucrose-induced metabolic changes. Dis Markers 2014 2014 1 8 10.1155/2014/386425 24719499
    [Google Scholar]
  72. Mutlu N. Effects of grape seed oil nanoemulsion on physicochemical and antibacterial properties of gelatin‑sodium alginate film blends. Int J Biol Macromol 2023 237 124207 10.1016/j.ijbiomac.2023.124207 36990416
    [Google Scholar]
  73. El-Sayed S.M. El-Sayed H.S. Elgamily H.M. Youssef A.M. Preparation and evaluation of yogurt fortified with probiotics jelly candy enriched with grape seeds extract nanoemulsion. J Food Process Preserv 2022 46 7 e16713 10.1111/jfpp.16713
    [Google Scholar]
  74. Debus T Oliver Drozdalski New oil-in-water nanoemulsion. WO Patent 2022254014A1. 2022
    [Google Scholar]
  75. Gesztesi J-L Leandra MS Hennies PT Karla AM Oil-in-water nanoemulsion, a cosmetic composition and a cosmetic product comprising it. US Patent 8956597B2 2015
    [Google Scholar]
  76. Bonferoni M.C. Rossi S. Sandri G. Ferrari F. Gavini E. Rassu G. Giunchedi P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019 11 2 84 10.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  77. QUAN C. Nanoemulsão Óleo em Água. [Oil-in-water nanoemulsion]. BR Patent 112020011757B1 2022
    [Google Scholar]
  78. Daniel Melnick W.E. Novel vegetable oil. US Patent 3529974 1970
    [Google Scholar]
  79. Haynes L.V. Edmund P. Cooking oils. US Patent 005169669A 1992
    [Google Scholar]
  80. Lawton C. Nicolosi R. Refined vegetable oils and extracts thereof. US Patent 6,197,357 B1 2001
    [Google Scholar]
  81. Herslöf B. Fractionated vegetable oil. US Patent 6355693 2002
    [Google Scholar]
  82. GESZTESI J.L. An oil-in-water nanoemulsion, a cosmetic composition and a cosmetic product comprising it, a process for preparing said nanoemulsion. WO Patent 2006045170A2 2004
    [Google Scholar]
  83. Sandri G. Rossi S. Oil-in-Water Nanoemulsions. US Patent 20170354596A1 2015
    [Google Scholar]
  84. Sanagustin Aquilue J. Lendínez Gris M.C. Delgado Gañán M.I. An Oil-in-Water Nanoemulsion Composition of Clobetasol. US 2019/0298737 A1 2019 Laboratorios Salvat S.A., Assignee. Priority: EP (23 Jun 2017). PCT/EP2018/051218 (Filed Jan 18, 2018).
    [Google Scholar]
  85. Zarket B. Doyle B. Badruddoza A. Thermoresponsive oil-in-water nanoemulsion. WO Patent 2020112595A1 2020
    [Google Scholar]
  86. de Castro K.C. Coco J.C. dos Santos É.M. Ataide J.A. Martinez R.M. do Nascimento M.H.M. Prata J. da Fonte P.R.M.L. Severino P. Mazzola P.G. Baby A.R. Souto E.B. de Araujo D.R. Lopes A.M. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023 353 802 822 10.1016/j.jconrel.2022.12.017 36521691
    [Google Scholar]
  87. Yu H. Dyett B. Kirby N. Cai X. Mohamad M.E. Bozinovski S. Drummond C.J. Zhai J. pH‐dependent lyotropic liquid crystalline mesophase and ionization behavior of phytantriol‐based ionizable lipid nanoparticles. Small 2024 20 20 2309200 10.1002/smll.202309200 38295089
    [Google Scholar]
  88. Prakash V. Parida L. Characterization and rheological behavior of vitamin E nanoemulsions prepared by phase inversion composition technique. Results Eng 2023 18 101175 10.1016/j.rineng.2023.101175
    [Google Scholar]
  89. Singh P. Kaur G. Singh A. Physical, morphological and storage stability of clove oil nanoemulsion based delivery system. Food Sci Technol Int 2023 29 2 156 167 10.1177/10820132211069470 34939458
    [Google Scholar]
  90. Nash J.J. Erk K.A. Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surf A Physicochem Eng Asp 2017 517 1 11 10.1016/j.colsurfa.2016.12.056
    [Google Scholar]
  91. Gao W. Jiang Z. Du X. Zhang F. Liu Y. Bai X. Sun G. Impact of surfactants on nanoemulsions based on fractionated coconut oil: Emulsification stability and in vitro digestion. J Oleo Sci 2020 69 3 227 239 10.5650/jos.ess19264 32051356
    [Google Scholar]
  92. Li Y. Wu C.L. Liu J. Zhu Y. Zhang X.Y. Jiang L.Z. Qi B.K. Zhang X.N. Wang Z.J. Teng F. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization. Nanomaterials 2018 8 5 307 10.3390/nano8050307 29735918
    [Google Scholar]
  93. Luo L. Chen Q. Gong H. Liu L. Zhou L. He H. Zhang Y. Yin T. Tang X. Capacity of cholesteryl hemisuccinate in ion pair/phospholipid complex to improve drug-loading, stability and antibacterial activity of clarithromycin intravenous lipid microsphere. Colloids Surf B Biointerfaces 2018 172 262 271 10.1016/j.colsurfb.2018.08.038 30173093
    [Google Scholar]
  94. Zhang B. Zhou X. Miao Y. Wang X. Yang Y. Zhang X. Gan Y. Effect of phosphatidylcholine on the stability and lipolysis of nanoemulsion drug delivery systems. Int J Pharm 2020 583 119354 10.1016/j.ijpharm.2020.119354 32348799
    [Google Scholar]
  95. Munawiroh S.Z. Permatasari A. Chabib L. Development of a water-in-grape seed oil (Vitis vinifera L.) nanoemulsion formula as a lipstick base. MPI 2019 2 4 181 191 10.24123/mpi.v2i4.1780
    [Google Scholar]
  96. Flores-Andrade E. Allende-Baltazar Z. Sandoval-González P.E. Jiménez-Fernández M. Beristain C.I. Pascual-Pineda L.A. Carotenoid nanoemulsions stabilized by natural emulsifiers: Whey protein, gum Arabic, and soy lecithin. J Food Eng 2021 290 110208 10.1016/j.jfoodeng.2020.110208
    [Google Scholar]
  97. Kim H. Kim K. Lee H.R. Jo H. Jeong D. Ryu J. Gweon D-G. Choi S.Q. Formation of stable adhesive water-in-oil emulsions using a phospholipid and cosurfactants. J Ind Eng Chem 2017 55 198 203 10.1016/j.jiec.2017.06.046
    [Google Scholar]
  98. Teng F. He M. Xu J. Chen F. Wu C. Wang Z. Li Y. Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Sci Rep 2020 10 1 14010 10.1038/s41598‑020‑70462‑8 32814779
    [Google Scholar]
  99. Sun H. Ma Y. Huang X. Song L. Guo H. Sun X. Li N. Qiao M. Stabilization of flaxseed oil nanoemulsions based on flaxseed gum: Effects of temperature, pH and NaCl on stability. Lebensm Wiss Technol 2023 176 114512 10.1016/j.lwt.2023.114512
    [Google Scholar]
  100. Rao J. McClements D.J. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem 2010 58 11 7059 7066 10.1021/jf100990r 20476765
    [Google Scholar]
  101. Capek I. Degradation of kinetically-stable o/w emulsions. Adv Colloid Interface Sci 2004 107 2-3 125 155 10.1016/S0001‑8686(03)00115‑5 15026289
    [Google Scholar]
  102. Gupta A. Eral H.B. Hatton T.A. Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016 12 11 2826 2841 10.1039/C5SM02958A 26924445
    [Google Scholar]
  103. Alvarado A.G. Nolla J. Rabelero M. Pérez-Carrillo L.A. Arellano M. Mendizábal E. Solans C. Puig J.E. Poly(hexyl methacrylate) nanoparticles templating in nanoemulsions-made by phase inversion temperature. J Macromol Sci Part A Pure Appl Chem 2013 50 4 385 391 10.1080/10601325.2013.768119
    [Google Scholar]
  104. Paradiso V.M. Pasqualone A. Summo C. Caponio F. An “omics” approach for lipid oxidation in foods: The case of free fatty acids in bulk purified olive oil. Eur J Lipid Sci Technol 2018 120 7 1800102 10.1002/ejlt.201800102
    [Google Scholar]
  105. Sadeghian S.F. Majdinasab M. Nejadmansouri M. Hosseini S.M.H. Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions. Ultrason Sonochem 2023 92 106277 10.1016/j.ultsonch.2022.106277 36571883
    [Google Scholar]
  106. Zhu Y. Li Y. Wu C. Teng F. Qi B. Zhang X. Zhou L. Yu G. Wang H. Zhang S. Wang Z. Jiang L. Stability mechanism of two soybean protein-phosphatidylcholine nanoemulsion preparation methods from a structural perspective: A Raman spectroscopy analysis. Sci Rep 2019 9 1 6985 10.1038/s41598‑019‑43439‑5 31061497
    [Google Scholar]
  107. Shokri S. Parastouei K. Taghdir M. Abbaszadeh S. Application an edible active coating based on chitosan- Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 °C. Int J Biol Macromol 2020 153 846 854 10.1016/j.ijbiomac.2020.03.080 32171831
    [Google Scholar]
  108. Gomes A. Costa A.L.R. Cunha R.L. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids Surf B Biointerfaces 2018 164 272 280 10.1016/j.colsurfb.2018.01.032 29413606
    [Google Scholar]
  109. McClements D.J. Protein-stabilized emulsions. Curr Opin Colloid Interface Sci 2004 9 5 305 313 10.1016/j.cocis.2004.09.003
    [Google Scholar]
  110. Lacatusu I. Badea N. Badea G. Oprea O. Mihaila M.A. Kaya D.A. Stan R. Meghea A. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation. Mater Sci Eng C 2015 56 88 94 10.1016/j.msec.2015.06.019 26249569
    [Google Scholar]
  111. Zaichik S. Steinbring C. Jelkmann M. Bernkop-Schnürch A. Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. Int J Pharm 2020 581 119299 10.1016/j.ijpharm.2020.119299 32251695
    [Google Scholar]
  112. Lowry G.V. Hill R.J. Harper S. Rawle A.F. Hendren C.O. Klaessig F. Nobbmann U. Sayre P. Rumble J. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ Sci Nano 2016 3 5 953 965 10.1039/C6EN00136J
    [Google Scholar]
  113. Schmitz W. Koderer C. El-Mesery M. Gubik S. Sampers R. Straub A. Kübler A.C. Seher A. Metabolic fingerprinting of murine L929 fibroblasts as a cell-based tumour suppressor model system for methionine restriction. Int J Mol Sci 2021 22 6 3039 10.3390/ijms22063039 33809777
    [Google Scholar]
  114. Dhorm Pimentel de Moraes A.R. Tavares G.D. Soares Rocha F.J. de Paula E. Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp Parasitol 2018 187 12 21 10.1016/j.exppara.2018.03.005 29518448
    [Google Scholar]
  115. Sharif H.R. Goff H.D. Majeed H. Liu F. Nsor-Atindana J. Haider J. Liang R. Zhong F. Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids Surf A Physicochem Eng Asp 2017 529 550 559 10.1016/j.colsurfa.2017.05.076
    [Google Scholar]
  116. Khunt D. Shrivas M. Polaka S. Gondaliya P. Misra M. Role of omega-3 fatty acids and butter oil in targeting delivery of donepezil hydrochloride microemulsion to brain via the intranasal route: A comparative study. AAPS PharmSciTech 2020 21 2 45 10.1208/s12249‑019‑1585‑7 31900652
    [Google Scholar]
  117. Ait-Touchente Z. Zine N. Jaffrezic-Renault N. Errachid A. Lebaz N. Fessi H. Elaissari A. Exploring the versatility of microemulsions in cutaneous drug delivery: Opportunities and challenges. Nanomaterials 2023 13 10 1688 10.3390/nano13101688 37242104
    [Google Scholar]
  118. Sharma S. Cheng S.F. Bhattacharya B. Chakkaravarthi S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci Technol 2019 91 305 318 10.1016/j.tifs.2019.07.030
    [Google Scholar]
  119. Shah R.M. Jadhav S.R. Bryant G. Kaur I.P. Harding I.H. On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery. Adv Colloid Interface Sci 2025 338 103402 10.1016/j.cis.2025.103402 39879887
    [Google Scholar]
  120. Zhang Z. McClements D.J. Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. Nanoemulsions: Formulation, Applications, and Characterization Cambridge, Massachusetts Academic Press 2018 21 49 10.1016/B978‑0‑12‑811838‑2.00002‑3
    [Google Scholar]
  121. In vitro release test studies for topical drug products submitted in ANDAs guidance for industry DRAFT guidance. Available from: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs 2025
  122. Sun G. Wang L. Dong Z. Zhang Y. Yang Y. Hu M. Fang H. The current status, hotspots, and development trends of nanoemulsions: A comprehensive bibliometric review. Int J Nanomedicine 2025 20 2937 2968 10.2147/IJN.S502490 40093547
    [Google Scholar]
  123. McClements D.J. Food Emulsions CRC Press 2015
    [Google Scholar]
/content/journals/biot/10.2174/0118722083398992251002045443
Loading
/content/journals/biot/10.2174/0118722083398992251002045443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test