Skip to content
2000
image of Patented Fibrinolytic Enzymes: An Overview

Abstract

Fibrinolytic enzymes have garnered significant attention from researchers due to their immense potential in the medical field. As research continues to advance, the outcomes have become increasingly fruitful. The generation of applicable knowledge is usually accompanied by its protection through patent applications. This article compiles all patents related to “fibrinolytic enzyme” from Google Patents and the European Patent Office's Espacenet database, analyzing their core information, including publication year, application country, patent status, source of the fibrinolytic enzyme, and its various biochemical features. By combining relevant patent protection with current literature research, this article provides a novel and forward-looking summary of the current research status in the field of fibrinolytic enzymes.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083364917250901064841
2025-10-17
2025-12-19
Loading full text...

Full text loading...

References

  1. David Troncoso F. Alberto Sánchez D. Luján Ferreira M. Production of plant proteases and new biotechnological applications: An updated review. ChemistryOpen 2022 11 3 202200017 10.1002/open.202200017 35286022
    [Google Scholar]
  2. Contesini F.J. Melo R.R. Sato H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol. 2018 38 3 321 334 10.1080/07388551.2017.1354354 28789570
    [Google Scholar]
  3. Gimenes N.C. Silveira E. Tambourgi E.B. An overview of proteases: Production, downstream processes and industrial applications. Separ. Purif. Rev. 2021 50 3 223 243 10.1080/15422119.2019.1677249
    [Google Scholar]
  4. Chew L. Toh G. Ismail A. Application of proteases for the production of bioactive peptides. Enzymes in Food Biotechnology Academic Press 2019 247 261 10.1016/B978‑0‑12‑813280‑7.00015‑3
    [Google Scholar]
  5. Solanki P Putatunda C Kumar A Bhatia R Walia A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech 2021 11 42
    [Google Scholar]
  6. Razzaq A. Shamsi S. Ali A. Ali Q. Sajjad M. Malik A. Ashraf M. Microbial proteases applications. Front. Bioeng. Biotechnol. 2019 7 110 10.3389/fbioe.2019.00110 31263696
    [Google Scholar]
  7. Jiang T. Zhang B. Zhang H. Wei M. Su Y. Song T. Ye S. Zhu Y. Wu W. Purification and properties of a plasmin-like marine protease from clamworm (Perinereis aibuhitensis). Mar. Drugs 2024 22 2 68 10.3390/md22020068 38393039
    [Google Scholar]
  8. Sorokin A.V. Goncharova S.S. Lavlinskaya M.S. Holyavka M.G. Faizullin D.A. Zuev Y.F. Kondratyev M.S. Artyukhov V.G. Complexation of bromelain, ficin, and papain with the graft copolymer of carboxymethyl cellulose sodium salt and N-vinylimidazole enhances enzyme proteolytic activity. Int. J. Mol. Sci. 2023 24 14 11246 10.3390/ijms241411246 37511006
    [Google Scholar]
  9. Banerjee G. Ray A.K. Impact of microbial proteases on biotechnological industries. Biotechnol. Genet. Eng. Rev. 2017 33 2 119 143 10.1080/02648725.2017.1408256 29205093
    [Google Scholar]
  10. Golgeri M D.B. Mulla S.I. Bagewadi Z.K. Tyagi S. Hu A. Sharma S. Bilal M. Bharagava R.N. Ferreira L.F.R. Gurumurthy D.M. Nadda A.K. A systematic review on potential microbial carbohydrases: Current and future perspectives. Crit. Rev. Food Sci. Nutr. 2024 64 2 438 455 10.1080/10408398.2022.2106545 35930295
    [Google Scholar]
  11. Singh S. Bajaj B.K. Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol. Environ. 2017 2 6 370 386 10.1007/s40974‑017‑0076‑5
    [Google Scholar]
  12. Song P. Zhang X. Wang S. Xu W. Wang F. Fu R. Wei F. Microbial proteases and their applications. Front. Microbiol. 2023 14 1236368 10.3389/fmicb.2023.1236368 37779686
    [Google Scholar]
  13. Adrio J. Demain A. Microbial enzymes: Tools for biotechnological processes. Biomolecules 2014 4 1 117 139 10.3390/biom4010117 24970208
    [Google Scholar]
  14. Mienda B.S. Yahya A. Galadima I.A. Shamsir M.S. An overview of microbial proteases for industrial applications. Res. J. Pharm. Biol. Chem. Sci. 2014 5 388 396
    [Google Scholar]
  15. Tavano O.L. Berenguer-Murcia A. Secundo F. Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf. 2018 17 2 412 436 10.1111/1541‑4337.12326 33350076
    [Google Scholar]
  16. Pasarin D. Enascuta C.E. Enache-Preoteasa C. Matei C.B. Ghizdareanu A-I. Combined alkaline and enzymatic hydrolysis of eggshell membranes for obtaining ingredients for food and cosmetic applications. Chemistry Proceedings 2023 13 20
    [Google Scholar]
  17. Tarek H. Nam K.B. Kim Y.K. Suchi S.A. Yoo J.C. Biochemical characterization and application of a detergent stable, antimicrobial and antibiofilm potential protease from Bacillus siamensis. Int. J. Mol. Sci. 2023 24 6 5774 10.3390/ijms24065774 36982846
    [Google Scholar]
  18. Vogelsang-O’Dwyer M. Sahin A.W. Arendt E.K. Zannini E. Enzymatic hydrolysis of pulse proteins as a tool to improve techno-functional properties. Foods 2022 11 9 1307 10.3390/foods11091307 35564030
    [Google Scholar]
  19. Galiakberova A.A. Bednenko D.M. Kreyer V.G. Osmolovskiy A.A. Egorov N.S. Formation and properties of the extracellular proteinase of Aspergillus flavus O-1 micromycete active against fibrillar proteins. Appl. Biochem. Microbiol. 2021 57 5 586 593 10.1134/S0003683821050069
    [Google Scholar]
  20. Weisel J.W. Litvinov R.I. Fibrin formation, structure and properties. Subcell. Biochem. 2017 82 405 456 10.1007/978‑3‑319‑49674‑0_13 28101869
    [Google Scholar]
  21. Litvinov R. Weisel J. What is the biological and clinical relevance of fibrin? Semin. Thromb. Hemost. 2016 42 4 333 343 10.1055/s‑0036‑1571342 27056152
    [Google Scholar]
  22. Singh R. Gautam P. Sharma C. Osmolovskiy A. Fibrin and fibrinolytic enzyme cascade in thrombosis: Unravelling the role. Life 2023 13 11 2196 10.3390/life13112196 38004336
    [Google Scholar]
  23. Pieters M. Wolberg A.S. Fibrinogen and fibrin: An illustrated review. Res. Pract. Thromb. Haemost. 2019 3 2 161 172 10.1002/rth2.12191 31011700
    [Google Scholar]
  24. Hazare C. Bhagwat P. Singh S. Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024 10 5 26668 10.1016/j.heliyon.2024.e26668 38434287
    [Google Scholar]
  25. Medcalf R.L. Keragala C.B. The fibrinolytic system: Mysteries and opportunities. HemaSphere 2021 5 6 570 10.1097/HS9.0000000000000570 34095754
    [Google Scholar]
  26. Osmolovskiy A.A. Kurakov A.V. Kreyer V.G. Baranova N.A. Egorov N.S. Ability of extracellular proteinases of micromycetes Aspergillus flavipes, Aspergillus fumigatus, and Aspergillus sydowii to affect proteins of the human haemostatic system. Moscow Univ. Biol. Sci. Bull. 2017 72 1 20 24 10.3103/S0096392517010011
    [Google Scholar]
  27. Altaf F. Wu S. Kasim V. Role of fibrinolytic enzymes in anti-thrombosis therapy. Front. Mol. Biosci. 2021 8 680397 10.3389/fmolb.2021.680397 34124160
    [Google Scholar]
  28. Sharma C. Osmolovskiy A. Singh R. Microbial fibrinolytic enzymes as anti-thrombotics: Production, characterisation and prodigious biopharmaceutical applications. Pharmaceutics 2021 13 11 1880 10.3390/pharmaceutics13111880 34834294
    [Google Scholar]
  29. Peng Y. Yang X. Zhang Y. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 2005 69 2 126 132 10.1007/s00253‑005‑0159‑7 16211381
    [Google Scholar]
  30. Kotb E. Activity assessment of microbial fibrinolytic enzymes. Appl. Microbiol. Biotechnol. 2013 97 15 6647 6665 10.1007/s00253‑013‑5052‑1 23812278
    [Google Scholar]
  31. Osmolovskiy A.A. Kreier V.G. Kurakov A.V. Baranova N. Egorov N.S. Aspergillus ochraceus micromycetes—producers of extracellular proteinases—protein C activators of blood plasma. Appl. Biochem. Microbiol. 2012 48 5 488 492 10.1134/S0003683812050109
    [Google Scholar]
  32. Alkarithi G. Duval C. Shi Y. Macrae F.L. Ariëns R.A.S. Thrombus structural composition in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2021 41 9 2370 2383 10.1161/ATVBAHA.120.315754 34261330
    [Google Scholar]
  33. Schellinger P.D. Warach S. Therapeutic time window of thrombolytic therapy following stroke. Curr. Atheroscler. Rep. 2004 6 4 288 294 10.1007/s11883‑004‑0060‑3 15191703
    [Google Scholar]
  34. Adams H. Adams R. Del Zoppo G. Goldstein L.B. Stroke Council of the American Heart Association American Stroke Association Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke 2005 36 4 916 923 10.1161/01.STR.0000163257.66207.2d 15800252
    [Google Scholar]
  35. Goldstein L.B. Acute ischemic stroke treatment in 2007. Circulation 2007 116 13 1504 1514 10.1161/CIRCULATIONAHA.106.670885 17893286
    [Google Scholar]
  36. Muramatsu H. Igarashi H. Okubo S. Katayama Y. Monteplase reduces infarct volume and hemorrhagic transformation in rat model of embolic stroke. Neurol Res 2002 24 3 311 316 10.1179/016164102101199800 11958428
    [Google Scholar]
  37. Niwa A. Nakamura M. Harada N. Musha T. Observational investigation of thrombolysis with the tissue-type plasminogen activator monteplase for acute pulmonary embolism in Japan. Circ. J. 2012 76 10 2471 2480 10.1253/circj.CJ‑12‑0091 22785619
    [Google Scholar]
  38. Nikitin D. Choi S. Mican J. Development and testing of thrombolytics in stroke. J Stroke 2021 23 1 12 36 10.5853/jos.2020.03349 33600700
    [Google Scholar]
  39. Ma H. Jiang Z. Xu J. Liu J. Guo Z.N. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv. 2021 28 1 357 371 10.1080/10717544.2021.1879315 33517820
    [Google Scholar]
  40. Guan Q. Dou H. Thrombus-targeting polymeric nanocarriers and their biomedical applications in thrombolytic therapy. Front. Physiol. 2021 12 763085 10.3389/fphys.2021.763085 34916956
    [Google Scholar]
  41. Shen M. Wang Y. Hu F. Lv L. Chen K. Xing G. Thrombolytic agents: Nanocarriers in targeted release. Molecules 2021 26 22 6776 10.3390/molecules26226776 34833868
    [Google Scholar]
  42. Cheng N.T. Kim A.S. Intravenous thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist 2015 5 3 101 109 10.1177/1941874415583116 26288668
    [Google Scholar]
  43. Cheng JW Bai Y Wang L Time-Effect of Plasmin in the Treatment of Acute Cerebral Infarction. Herald of Med 2016 35 8 849 853
    [Google Scholar]
  44. Errington J. Aart L.T. Microbe profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiolog 2020 166 5 425 427 10.1099/mic.0.000922 32391747
    [Google Scholar]
  45. Kovács Á.T. Bacillus subtilis. Trends Microbiol. 2019 27 8 724 725 10.1016/j.tim.2019.03.008 31000489
    [Google Scholar]
  46. Sansinenea E. Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 2011 33 8 1523 1538 10.1007/s10529‑011‑0617‑5 21528405
    [Google Scholar]
  47. Su Y. Liu C. Fang H. Zhang D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 2020 19 1 173 10.1186/s12934‑020‑01436‑8 32883293
    [Google Scholar]
  48. Graumann P. Bacillus: Cellular and Molecular Biology. Caister Academic Press 2012
    [Google Scholar]
  49. Cutting S.M. Bacillus probiotics. Food Microbiol. 2011 28 2 214 220 10.1016/j.fm.2010.03.007 21315976
    [Google Scholar]
  50. Elshaghabee F.M.F. Rokana N. Gulhane R.D. Sharma C. Panwar H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017 8 1490 10.3389/fmicb.2017.01490 28848511
    [Google Scholar]
  51. Radhakrishnan R. Hashem A. Abd Allah E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017 8 667 10.3389/fphys.2017.00667 28932199
    [Google Scholar]
  52. Mongkolthanaruk W. Classification of Bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechnol. 2012 22 12 1597 1604 10.4014/jmb.1204.04013 23221520
    [Google Scholar]
  53. de Lima Procópio R.E. da Silva I.R. Martins M.K. de Azevedo J.L. de Araújo J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012 16 5 466 471 10.1016/j.bjid.2012.08.014 22975171
    [Google Scholar]
  54. Viswanathan K. Rebecca L.J. Optimization of fibrinolytic enzyme from Streptomyces althioticus BN22. Res. J. Pharm. Technol. 2019 12 10 4989 10.5958/0974‑360X.2019.00864.3
    [Google Scholar]
  55. Silva G.M.M. Bezerra R.P. Teixeira J.A. Silva F.O. Correia J.M. Porto T.S. Lima-Filho J.L. Porto A.L.F. Screening, production and biochemical characterization of a new fibrinolytic enzyme produced by Streptomyces sp. (Streptomycetaceae) isolated from Amazonian lichens. Acta Amazon. 2016 46 3 323 332 10.1590/1809‑4392201600022
    [Google Scholar]
  56. Verma P. Chatterjee S. Keziah M.S. Devi S.C. Fibrinolytic protease from marine Streptomyces rubiginosus VITPSS1. Cardiovasc. Hematol. Agents Med. Chem. 2018 16 1 44 55 10.2174/1871525716666180226141551 29485011
    [Google Scholar]
  57. Yoav S. Stern J. Salama-Alber O. Frolow F. Anbar M. Karpol A. Hadar Y. Morag E. Bayer E.A. Directed evolution of Clostridium thermocellum β-glucosidase A towards enhanced thermostability. Int. J. Mol. Sci. 2019 20 19 4701 10.3390/ijms20194701 31547488
    [Google Scholar]
  58. Feinberg L. Foden J. Barrett T. Davenport K.W. Bruce D. Detter C. Tapia R. Han C. Lapidus A. Lucas S. Cheng J.F. Pitluck S. Woyke T. Ivanova N. Mikhailova N. Land M. Hauser L. Argyros D.A. Goodwin L. Hogsett D. Caiazza N. Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J. Bacteriol. 2011 193 11 2906 2907 10.1128/JB.00322‑11 21460082
    [Google Scholar]
  59. Akinosho H. Yee K. Close D. Ragauskas A. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem. 2014 2 66 10.3389/fchem.2014.00066 25207268
    [Google Scholar]
  60. Wang S.L. Chen H.J. Liang T.W. Lin Y.D. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 2009 44 1 70 76 10.1016/j.procbio.2008.09.009
    [Google Scholar]
  61. Shu L.J. Yang Y.L. Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry—effects of culture conditions. Sci. Rep. 2017 7 1 15546 10.1038/s41598‑017‑15808‑5 29138467
    [Google Scholar]
  62. Vijayaraghavan P. Prakash Vincent S.G. Valan Arasu M. Al-Dhabi N.A. Bioconversion of agro-industrial wastes for the production of fibrinolytic enzyme from Bacillus halodurans IND18: Purification and biochemical characterization. Electron. J. Biotechnol. 2016 20 1 8 10.1016/j.ejbt.2016.01.002
    [Google Scholar]
  63. George-Oka U.O. Mike-Anosi E.E. Screening and optimal protease production by Bacillus sp. Sw-2 using low cost substrate medium. Res. J. Microbiol. 2012 7 7 327 336 10.3923/jm.2012.327.336
    [Google Scholar]
  64. Kasana R.C. Proteases from psychrotrophs: An overview. Crit. Rev. Microbiol. 2010 36 2 134 145 10.3109/10408410903485525 20047457
    [Google Scholar]
  65. Joshi S. Satyanarayana T. Biotechnology of cold-active proteases. Biology 2013 2 2 755 783 10.3390/biology2020755 24832807
    [Google Scholar]
  66. Satyanarayana T. Littlechild J. Kawarabayasi Y. Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles. 2013 10.1007/978‑94‑007‑5899‑5
    [Google Scholar]
  67. Jeong S-j Ryu M-S Seo J-W Yang H-j Jeong D-Y Acillus subtilis srcm101393 strain having probiotics-related enzyme secretion activity, fibrinolytic activity, antimicrobial activity, and not producing harmful enzyme and biogenic amine and uses thereof. K.R. Patent 20220000109A 2022
  68. Yang Wang Bacillus coagulans with fibrinolytic activity. C.N. Patent 113186125B 2022
    [Google Scholar]
  69. Park JG Noh YS Nam SK Jin SH Fibrinolytic enzyme derived from Bacillus sp. K.R. Patent 100478214:B1 2005
    [Google Scholar]
  70. Moharam M.E. El-Bendary M.A. Abo Elsoud M.M. Beih F.E. Hassnin S.M. Salama A. Omara E.A. Elgamal N.N. Modeling and in-vivo evaluation of fibrinolytic enzyme produced by Bacillus subtilis Egy under solid state fermentation. Heliyon 2023 9 5 16254 10.1016/j.heliyon.2023.e16254 37251871
    [Google Scholar]
  71. Biji GD Arun A Muthulakshmi E Vijayaraghavan P Arasu MV Al-Dhabi NA Bio-prospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation. 3 Biotech 2016 6 231
    [Google Scholar]
  72. Vijayaraghavan P. Rajendran P. Prakash Vincent S.G. Arun A. Abdullah Al-Dhabi N. Valan Arasu M. Young Kwon O. Kim Y.O. Novel sequential screening and enhanced production of fibrinolytic enzyme by Bacillus sp. IND12 using response surface methodology in solid-state fermentation. BioMed Res. Int. 2017 2017 1 13 10.1155/2017/3909657 28321408
    [Google Scholar]
  73. Soares V.F. Castilho L.R. Bon E.P.S. Freire D.M.G. High-yield Bacillus subtilis protease production by solid-state fermentation. Appl. Biochem. Biotechnol. 2005 121 1-3 0311 0320 10.1385/ABAB:121:1‑3:0311 15917609
    [Google Scholar]
  74. Wu R. Chen G. Pan S. Zeng J. Liang Z. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Sci. Rep. 2019 9 1 6824 10.1038/s41598‑019‑43371‑8 31048760
    [Google Scholar]
  75. Pan S. Chen G. Wu R. Cao X. Liang Z. Non-sterile submerged fermentation of fibrinolytic enzyme by marine Bacillus subtilis harboring antibacterial activity with starvation strategy. Front. Microbiol. 2019 10 1025 10.3389/fmicb.2019.01025 31156576
    [Google Scholar]
  76. Pan S. Chen G. Zeng J. Cao X. Zheng X. Zeng W. Liang Z. Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochem. Eng. J. 2019 141 268 277 10.1016/j.bej.2018.11.002
    [Google Scholar]
  77. Hamza T.A. Bacterial protease enzyme: Safe and good alternative for industrial and commercial use. International Journal of Chemical and Biomolecular Science 2017 3 1 1 10
    [Google Scholar]
  78. Barrett A.J. Proteases. Curr Protoc Protein Sci 2001 Chapter 21: Unit 21.1. 10.1002/0471140864.ps2101s2
    [Google Scholar]
  79. Naveed M. Nadeem F. Mehmood T. Bilal M. Anwar Z. Amjad F. Protease—A versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catal. Lett. 2021 151 2 307 323 10.1007/s10562‑020‑03316‑7
    [Google Scholar]
  80. Agrebi R. Haddar A. Hajji M. Frikha F. Manni L. Jellouli K. Nasri M. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: Characterization and statistical media optimization. Can. J. Microbiol. 2009 55 9 1049 1061 10.1139/W09‑057 19898547
    [Google Scholar]
  81. Fox R.T.V. Armillaria Root Rot: Biology and Control of Honey Fungus. Intercept Press UK 2000
    [Google Scholar]
  82. Yang J. Wang L. Ji X. Feng Y. Li X. Zou C. Xu J. Ren Y. Mi Q. Wu J. Liu S. Liu Y. Huang X. Wang H. Niu X. Li J. Liang L. Luo Y. Ji K. Zhou W. Yu Z. Li G. Liu Y. Li L. Qiao M. Feng L. Zhang K.Q. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog. 2011 7 9 1002179 10.1371/journal.ppat.1002179 21909256
    [Google Scholar]
  83. Golden R. Quimby D.S. Lecythophora soft-tissue infection: Case report and treatment considerations. Cureus 2023 15 8 42919 10.7759/cureus.42919 37664280
    [Google Scholar]
  84. Howard D.H. Pathogenic Fungi in Humans and Animals. CRC Press 2002 10.1201/9780203909102
    [Google Scholar]
  85. Chinese medicine specimen database. 2024 Available from: https://libproject.hkbu.edu.hk/was40/detail?record=112&channelid=44273
  86. Lin BQ. Li SP. Cordyceps as an Herbal Drug. Benzie IFF Wachtel-Galor S, editors Herbal medicine: Biomolecular and clinical aspects. 2nd ed. Boca Raton CRC Press 2011 73 105 10.1201/b10787‑6
    [Google Scholar]
  87. Subramaniyam R. Vimala R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int. J. Sci. Nat. 2012 3 3 480 483
    [Google Scholar]
  88. Qihe C Guoqing H Jianliang Z Ruan H Haifeng Z Yellow-green halimasch fibrinolytic enzyme and production method thereof. C.N. Patent 101113413A 2008
  89. Yuxia M Yunxiang L Wanting Z Zhenmin C Yongmei H Separated cordyceps sinensis and application thereof in production of plasmin. C.N. Patent 110616151A 2019
  90. Xiaolan L Guanlong L Xiqun Z Yongping D A kind of agrocybe fibrinolysin and preparation method thereof. C.N. Patent 110423739A 2019
  91. Xiaolan L Xiqun Z Jinyu W Guanlong L Coprinus comatus plasmin and preparation method and application thereof. C.N. Patent 116590261A 2023
  92. Yongping D Xiaolan L Jiaxin C Guanlong L Xiqun Z New pantocrine-mushroom plasmin and preparation method and application thereof. C.N. Patent 115786312A 2023
  93. Chen SN Lu CL Wu JF Chen S Process of producing fibrinolytic enzyme from mushroom. U.S. Patent 20100279353A1 2010
  94. Lu Fuping Producing new fibrinolysin from rhizopchin. C.N. Patent 1587399A 2005
  95. Hong Y. Methods for fermentative production of fibrinolytic enzyme from auricularia auricula-judae and uses thereof. K.R. Patent 20100096442A 2010
  96. Feijoo-Siota L. Villa T.G. Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol. 2011 4 6 1066 1088 10.1007/s11947‑010‑0431‑4
    [Google Scholar]
  97. González-Rábade N. Badillo-Corona J.A. Aranda-Barradas J.S. Oliver-Salvador M.C. Production of plant proteases in vivo and in vitro — A review. Biotechnol. Adv. 2011 29 6 983 996 10.1016/j.biotechadv.2011.08.017 21889977
    [Google Scholar]
  98. Mazorra-Manzano M.A. Ramírez-Suarez J.C. Yada R.Y. Plant proteases for bioactive peptides release: A review. Crit. Rev. Food Sci. Nutr. 2018 58 13 2147 2163 10.1080/10408398.2017.1308312 28394630
    [Google Scholar]
  99. Costa J.O. Fonseca K.C. Garrote-Filho M.S. Cunha C.C. de Freitas M.V. Silva H.S. Araújo R.B. Penha-Silva N. Oliveira F. Structural and functional comparison of proteolytic enzymes from plant latex and snake venoms. Biochimie 2010 92 12 1760 1765 10.1016/j.biochi.2010.09.002 20868725
    [Google Scholar]
  100. Balakireva A.V. Kuznetsova N.V. Petushkova A.I. Savvateeva L.V. Zamyatnin A.A. Jr Trends and prospects of plant proteases in therapeutics. Curr. Med. Chem. 2019 26 3 465 486 10.2174/0929867325666171123204403 29173148
    [Google Scholar]
  101. Choi J.H. Kim D.W. Park S.E. Choi B.S. Sapkota K. Kim S. Kim S.J. Novel thrombolytic protease from edible and medicinal plant Aster yomena (Kitam.) Honda with anticoagulant activity: Purification and partial characterization. J. Biosci. Bioeng. 2014 118 4 372 377 10.1016/j.jbiosc.2014.03.004 24746735
    [Google Scholar]
  102. Shivaprasad H.V. Riyaz M. Venkatesh Kumar R. Dharmappa K.K. Tarannum S. Siddesha J.M. Rajesh R. Vishwanath B.S. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J. Thromb. Thrombolysis 2009 28 3 304 308 10.1007/s11239‑008‑0290‑2 18979066
    [Google Scholar]
  103. da Silva A.V. do Nascimento J.M. Rodrigues C.H. Silva Nascimento D.C. Pedrosa Brandão Costa R.M. de Araújo Viana Marques D. Lima Leite A.C. Figueiredo M.V.B. Pastrana L. Converti A. Nascimento T.P. Figueiredo Porto A.L. Partial purification of fibrinolytic and fibrinogenolytic protease from Gliricidia sepium seeds by aqueous two-phase system. Biocatal. Agric. Biotechnol. 2020 27 101669 10.1016/j.bcab.2020.101669
    [Google Scholar]
  104. Patel G.K. Kawale A.A. Sharma A.K. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol. Biochem. 2012 52 104 111 10.1016/j.plaphy.2011.12.004 22305073
    [Google Scholar]
  105. Spencer D. Dickey L. F. Gasdaska J. R. Wang X. Cox K. M. Peele C. G. Expression of plasminogen and microplasminogen in duck weed. C.N. Patent 1938427A 2007
  106. Zhao J. Qi S-P. Wu J. Li L. He R-Q. Earthworm fibrinolytic enzyme. Studies in Natural Products Chemistry ELSEVIER 2005 30 825 847 10.1016/S1572‑5995(05)80048‑1
    [Google Scholar]
  107. Akazawa S. Tokuyama H. Sato S. Watanabe T. Shida Y. Ogasawara W. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes. J. Biosci. Bioeng. 2018 125 2 155 159 10.1016/j.jbiosc.2017.08.011 28916302
    [Google Scholar]
  108. Nakajima N. Mihara H. Sumi H. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci. Biotechnol. Biochem. 1993 57 10 1726 1730 10.1271/bbb.57.1726 7764268
    [Google Scholar]
  109. Marin E. Kornilov D.A. Bukhdruker S.S. Aleksenko V.A. Manuvera V.A. Zinovev E.V. Kovalev K.V. Shevtsov M.B. Talyzina A.A. Bobrovsky P.A. Kuzmichev P.K. Mishin A.V. Gushchin I.Y. Lazarev V.N. Borshchevskiy V.I. Structural insights into thrombolytic activity of destabilase from medicinal leech. Sci. Rep. 2023 13 1 6641 10.1038/s41598‑023‑32459‑x 37095116
    [Google Scholar]
  110. Song T. Han X. Jiang T. Pu X. Wei M. Zhu Y. Wu W. Chromatographic purification of the plasmin‐like enzyme from clamworm ( Perinereis aibuhitensis Grub) and its fibrinolytic activity by metal ions. FASEB J. 2024 38 13 23747 10.1096/fj.202400086RR 38924451
    [Google Scholar]
  111. Bi Q. Han B. Feng Y. Jiang Z. Yang Y. Liu W. Antithrombotic effects of a newly purified fibrinolytic protease from Urechis unicinctus. Thromb. Res. 2013 132 2 e135 e144 10.1016/j.thromres.2013.07.001 23891134
    [Google Scholar]
  112. Sanchez E. Flores-Ortiz R. Alvarenga V. Eble J. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: Structural, biochemical features and therapeutic potential. Toxins 2017 9 12 392 10.3390/toxins9120392 29206190
    [Google Scholar]
  113. Swenson S. Markland F.S. Jr Snake venom fibrin(ogen)olytic enzymes. Toxicon 2005 45 8 1021 1039 10.1016/j.toxicon.2005.02.027 15882884
    [Google Scholar]
  114. Delgado-Prudencio G. Cid-Uribe J.I. Morales J.A. Possani L.D. Ortiz E. Romero-Gutiérrez T. The enzymatic core of scorpion venoms. Toxins 2022 14 4 248 10.3390/toxins14040248 35448857
    [Google Scholar]
  115. Markland F.S. Jr Swenson S. Snake venom metalloproteinases. Toxicon 2013 62 3 18 10.1016/j.toxicon.2012.09.004 23000249
    [Google Scholar]
  116. Teixeira C de FP Fernandes CM Zuliani JP Zamuner SF Inflammatory effects of snake venom metalloproteinases. Mem. Inst. Oswaldo Cruz 2005 100 Suppl 1 181 184 10.1590/S0074‑02762005000900031
    [Google Scholar]
  117. Jin B-R Chu Y-M Lee G-S Je Y-H Yoon H-J Son H-D Erin protease from the venom of the bumblebee bombus ignitus as fibrinogenolytic and fibrinolytic enzyme. K.R. Patent 101086066B1 2011
/content/journals/biot/10.2174/0118722083364917250901064841
Loading
/content/journals/biot/10.2174/0118722083364917250901064841
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: thrombus ; thromboses ; Fibrinolytic enzyme ; hemostatic system ; fibrin ; fibrinase ; thrombolytics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test