Skip to content
2000
image of Optimized Protocol for Sorghum Regeneration: Enhancing Embryogenic Callus Formation from Immature Inflorescences

Abstract

Aim

This study aims to develop an efficient and reproducible protocol for high-frequency embryogenic callus induction and subsequent plant regeneration in multiple sorghum ( L. Moench) cultivars, thereby establishing a foundation for genetic transformation, mutation breeding, and other biotechnological applications aimed at enhancing sorghum crop improvement and productivity.

Background

Sorghum ( (L.) Moench) is an important cereal crop known for its adaptability to harsh environments and nutritional value. Despite its significance, sorghum remains challenging for propagation due to difficulties in regenerating callus tissue, especially from monocotyledonous explants. Callus induction and regeneration protocols are crucial for genetic transformation, mutation breeding, and biotechnological applications in sorghum improvement.

Objective

To establish an effective protocol for callus induction and subsequent plant regeneration using different sorghum cultivars, optimizing conditions for high-frequency embryogenic callus formation and plant regeneration.

Methods

Six sorghum cultivars (IS 3477, IS 33095, IS 7155, IS 2898, IS 7005, and IS 1202) were selected. Immature inflorescence explants were cultured on a modified Murashige and Skoog's (MS) medium with 3% sucrose, 0.8% agar, and 2.0 mg/l 2,4-D for callus induction. After 14 days, embryogenic and non-embryogenic calli were distinguished. Regeneration media were optimized using embryogenic calli, with 1.5 mg/l 6-benzylaminopurine (BAP) for shoot development and 1 mg/l NAA (1-naphthaleneacetic acid) in a half-strength MS medium for root development.

Results

Two distinct forms of calli were observed: a non-embryogenic light yellow callus and a white, granular embryogenic callus. Embryogenic callus induction frequency varied from 40% to 96% among the cultivars, with IS 3477 and IS 33095 exhibiting the highest frequencies (96% and 88%, respectively), while IS 1202 showed the lowest (40%). Regenerated shoots were successfully developed within 6-18 days and later transferred to a rooting medium, resulting in healthy plantlets. Transplanted plantlets showed normal growth and no morphological abnormalities in the field.

Conclusion

This study provides a reliable protocol for efficient callus induction and plant regeneration in multiple sorghum cultivars. The optimized conditions can be utilized for genetic studies, crop improvement, and biotechnological applications, thus contributing to the advancement of sorghum breeding and biotechnology research.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083362270250116101522
2025-05-30
2025-06-17
Loading full text...

Full text loading...

References

  1. Bhojwani S.S. Razdan M.K. Plant tissue culture: Theory and practice, a revised edition. Studies in Plant Science New York Elsevier 1996 5 ix
    [Google Scholar]
  2. Pola S. Mani N.S. Ramana T. Plant tissue culture studies in Sorghum bicolor: Immature embryo explants as the source material. Int. J. Plant Prod. 2008 2 1 1 14
    [Google Scholar]
  3. Espinosa-Leal C.A. Puente-Garza C.A. García-Lara S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018 248 1 1 18 10.1007/s00425‑018‑2910‑1 29736623
    [Google Scholar]
  4. Gurel S. Gurel E. Kaur R. Wong J. Meng L. Tan H.Q. Lemaux P.G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 2009 28 3 429 444 10.1007/s00299‑008‑0655‑1 19115059
    [Google Scholar]
  5. Raghuwanshi A. Birch R.G. Genetic transformation of sweet sorghum. Plant Cell Rep. 2010 29 9 997 1005 10.1007/s00299‑010‑0885‑x 20535472
    [Google Scholar]
  6. Assem S.K. Zamzam M.M. Hussein B.A. Evaluation of somatic embryogenesis and plant regeneration in tissue culture of ten sorghum (Sorghum bicolor L.) genotypes. Afr. J. Biotechnol. 2014 13 36 3605 3614
    [Google Scholar]
  7. Kumar N. Yadav S. Maithili S. Prasad R. Pal M. Sharma M.K. Optimization of an efficient and robust regeneration system for Sorghum bicolor: A vital step towards genetic engineering-based sorghum improvement. Plant Physiology Reports 2022 27 1 30 43 10.1007/s40502‑022‑00645‑0
    [Google Scholar]
  8. Murthy U.R. Visarada K.B.R.S. Annapurna A. Bharathi M. Developing tissue culture system for Sorghum. Cereal Res. Commun. 1990 18 257 262
    [Google Scholar]
  9. Silva T.N. Thomas J.B. Dahlberg J. Rhee S.Y. Mortimer J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022 73 3 646 664 10.1093/jxb/erab450 34644381
    [Google Scholar]
  10. Liu G. Gilding E.K. Godwin I.D. A robust tissue culture system for sorghum [ Sorghum bicolor (L.) Moench]. S. Afr. J. Bot. 2015 98 157 160 [Sorghum bicolor (L.) Moench]. 10.1016/j.sajb.2015.03.179
    [Google Scholar]
  11. Kaeppler H.F. Pedersen J.F. Media effects on phenotype of callus cultures initiated from photoperiod-insensitive, elite inbred sorghum lines. Maydica 1996 41 83 89
    [Google Scholar]
  12. Flinn B. Dale S. Disharoon A. Kresovich S. Comparative analysis of in vitro responses and regeneration between diverse bioenergy sorghum genotypes. Plants 2020 9 2 248 10.3390/plants9020248 32075100
    [Google Scholar]
  13. Sai N.K. Visarada K.B.R.S. Lakshmi Y.A. Pashupatinath E. Rao S.V. Seetharama N. In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep. 2006 25 3 174 182 10.1007/s00299‑005‑0044‑y 16402251
    [Google Scholar]
  14. Wang L. Gao L. Liu G. Meng R. Liu Y. Li J. An efficient sorghum transformation system using embryogenic calli derived from mature seeds. PeerJ 2021 9 e11849 10.7717/peerj.11849 34430078
    [Google Scholar]
  15. Che P. Wu E. Simon M.K. Anand A. Lowe K. Gao H. Sigmund A.L. Yang M. Albertsen M.C. Gordon-Kamm W. Jones T.J. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 2022 5 1 344 10.1038/s42003‑022‑03308‑w 35410430
    [Google Scholar]
  16. Brettell R.I.S. Wernicke W. Thomas E. Embryogenesis from cultured immature inflorescences ofSorghum bicolor. Protoplasma 1980 104 1-2 141 148 10.1007/BF01279376
    [Google Scholar]
  17. Mani N.S. Pola S.R. Multiple shoot induction from immature inflorescence in Sorghum. Cytologia (Tokyo) 2003 68 2 199 204 10.1508/cytologia.68.199
    [Google Scholar]
  18. Thaddi B.N. Paidi R.R. Uddandapu P.K. Babu V. Dabbada L.N.V. Sadu R.R. Rao N. Deciphering genotype-specific hormonal responses: Implications for enhanced callus induction and regeneration in sorghum (Sorghum bicolor L. Moench). Afr J Biol Sci. 2024 6 13 2256 2280
    [Google Scholar]
  19. Kanani Z. Mohammed S.E.T. Initiation of callus from different genotypes of Sorghum bicolor L. Moench. Afr. J. Agric. Res. 2020 15 4 546 552
    [Google Scholar]
  20. Nabors M.W. Grimes H.D. Moller M. In vitro culture of plant cells and tissues: A review. Plant Cell Tissue Organ Cult. 1983 2 1 1 14
    [Google Scholar]
  21. Belide S. Vanhercke T. Petrie J.R. Singh S.P. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 2017 13 1 109 10.1186/s13007‑017‑0260‑9 29234458
    [Google Scholar]
  22. Benson E.E. Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell. Dev. Biol. Plant 2000 36 3 163 170 10.1007/s11627‑000‑0032‑4
    [Google Scholar]
  23. Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult. 2007 90 1 1 8 10.1007/s11240‑007‑9249‑9
    [Google Scholar]
  24. Baskaran P. Jayabalan N. A simple approach to improve plant regeneration from callus culture of Sorghum bicolor for crop improvement. J. Agric. Biotechnol. 2005 1 1 179 192
    [Google Scholar]
  25. Maheswari M. Jyothi Lakshmi N. Yadav S.K. Varalaxmi Y. Vijaya Lakshmi A. Vanaja M. Venkateswarlu B. Efficient plant regeneration from shoot apices of sorghum. Biol. Plant. 2006 50 4 741 744 10.1007/s10535‑006‑0120‑3
    [Google Scholar]
  26. Pola S. Saradamani N. Ramana T. Enhanced shoot regeneration in tissue culture studies of Sorghum bicolor. Agric. Technol. Thail. 2007 3 275 286
    [Google Scholar]
  27. Dreger M. Mól R. Deja A. Raj E. Mańkowska G. Wielgus K. Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench. In Vitro Cell. Dev. Biol. Plant 2019 55 2 190 198 10.1007/s11627‑019‑09963‑9
    [Google Scholar]
  28. Luwanska A Dreger M Mankowska G Marszalek M Wielgus K Regeneration of sorghum in cultures of isolated embryos. BioTechnologia 2015 96 1
    [Google Scholar]
  29. Jogeswar G. Ranadheer D. Anjaiah V. Kavi Kishor P.B. High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell. Dev. Biol. Plant 2007 43 2 159 166 10.1007/s11627‑007‑9033‑x
    [Google Scholar]
  30. Amali P. Ramakrishnan M. Kingsley S.J. Ignacimuthu S. Direct regeneration potential of Sorghum bicolor (L.) Moench under the influence of plant growth regulators. Plant Cell Biotechnol. Mol. Biol. 2014 15 118 126
    [Google Scholar]
  31. Chou J. Huang J. Huang Y. Simple and efficient genetic transformation of sorghum using immature inflorescences. Acta Physiol. Plant. 2020 42 3 41 10.1007/s11738‑020‑3023‑6
    [Google Scholar]
  32. Ahmed R.I. Rehman S.U. Akhtar H.L. Khan A.M. Mahmood K. Ahmad R.T. Optimization of in vitro responses of various explants sources in sorghum (Sorghum bicolor). Asian J Agric Biol. 2022 2 1 8
    [Google Scholar]
  33. Avci S. Development of an efficient regeneration system via somatic embryogenesis obtained from mature embryos in some grain and silage sorghum cultivars. Appl. Ecol. Environ. Res. 2019 17 1 1349 1357 10.15666/aeer/1701_13491357
    [Google Scholar]
  34. Liu G. Gilding E.K. Godwin I.D. Additive effects of three auxins and copper on sorghum in vitro root induction. In Vitro Cell. Dev. Biol. Plant 2013 49 2 191 197 10.1007/s11627‑012‑9488‑2
    [Google Scholar]
  35. Ardabili G.S. Zakaria R.A. Zare N. In vitro induction of polyploidy in Sorghum bicolor L. Cytologia 2015 80 4 495 503 10.1508/cytologia.80.495
    [Google Scholar]
/content/journals/biot/10.2174/0118722083362270250116101522
Loading
/content/journals/biot/10.2174/0118722083362270250116101522
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: callus ; embryogenic calli ; immature inflorescence ; 2 ; monocotyledonous explants ; plant regeneration ; KN ; NAA ; IAA ; ZN ; 4-D ; Sorghum ; IBA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test