Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Aim

This study aims to develop an efficient and reproducible protocol for high-frequency embryogenic callus induction and subsequent plant regeneration in multiple sorghum ( L. Moench) cultivars, thereby establishing a foundation for genetic transformation, mutation breeding, and other biotechnological applications aimed at enhancing sorghum crop improvement and productivity.

Background

Sorghum ( (L.) Moench) is an important cereal crop known for its adaptability to harsh environments and nutritional value. Despite its significance, sorghum remains challenging for propagation due to difficulties in regenerating callus tissue, especially from monocotyledonous explants. Callus induction and regeneration protocols are crucial for genetic transformation, mutation breeding, and biotechnological applications in sorghum improvement.

Objective

To establish an effective protocol for callus induction and subsequent plant regeneration using different sorghum cultivars, optimizing conditions for high-frequency embryogenic callus formation and plant regeneration.

Methods

Six sorghum cultivars (IS 3477, IS 33095, IS 7155, IS 2898, IS 7005, and IS 1202) were selected. Immature inflorescence explants were cultured on a modified Murashige and Skoog's (MS) medium with 3% sucrose, 0.8% agar, and 2.0 mg/l 2,4-D for callus induction. After 14 days, embryogenic and non-embryogenic calli were distinguished. Regeneration media were optimized using embryogenic calli, with 1.5 mg/l 6-benzylaminopurine (BAP) for shoot development and 1 mg/l NAA (1-naphthaleneacetic acid) in a half-strength MS medium for root development.

Results

Two distinct forms of calli were observed: a non-embryogenic light yellow callus and a white, granular embryogenic callus. Embryogenic callus induction frequency varied from 40% to 96% among the cultivars, with IS 3477 and IS 33095 exhibiting the highest frequencies (96% and 88%, respectively), while IS 1202 showed the lowest (40%). Regenerated shoots were successfully developed within 6-18 days and later transferred to a rooting medium, resulting in healthy plantlets. Transplanted plantlets showed normal growth and no morphological abnormalities in the field.

Conclusion

This study provides a reliable protocol for efficient callus induction and plant regeneration in multiple sorghum cultivars. The optimized conditions can be utilized for genetic studies, crop improvement, and biotechnological applications, thus contributing to the advancement of sorghum breeding and biotechnology research.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083362270250116101522
2025-05-30
2025-12-06
Loading full text...

Full text loading...

References

  1. BhojwaniS.S. RazdanM.K. Plant tissue culture: Theory and practice, a revised edition.In: Studies in Plant ScienceNew YorkElsevier19965ix
    [Google Scholar]
  2. PolaS. ManiN.S. RamanaT. Plant tissue culture studies in Sorghum bicolor: Immature embryo explants as the source material.Int. J. Plant Prod.200821114
    [Google Scholar]
  3. Espinosa-LealC.A. Puente-GarzaC.A. García-LaraS. In vitro plant tissue culture: Means for production of biological active compounds.Planta2018248111810.1007/s00425‑018‑2910‑1 29736623
    [Google Scholar]
  4. GurelS. GurelE. KaurR. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos.Plant Cell Rep.200928342944410.1007/s00299‑008‑0655‑1 19115059
    [Google Scholar]
  5. RaghuwanshiA. BirchR.G. Genetic transformation of sweet sorghum.Plant Cell Rep.2010299997100510.1007/s00299‑010‑0885‑x 20535472
    [Google Scholar]
  6. AssemS.K. ZamzamM.M. HusseinB.A. Evaluation of somatic embryogenesis and plant regeneration in tissue culture of ten sorghum (Sorghum bicolor L.) genotypes.Afr. J. Biotechnol.2014133636053614
    [Google Scholar]
  7. KumarN. YadavS. MaithiliS. PrasadR. PalM. SharmaM.K. Optimization of an efficient and robust regeneration system for Sorghum bicolor: A vital step towards genetic engineering-based sorghum improvement.Plant Physiology Reports2022271304310.1007/s40502‑022‑00645‑0
    [Google Scholar]
  8. MurthyU.R. VisaradaK.B.R.S. AnnapurnaA. BharathiM. Developing tissue culture system for Sorghum.Cereal Res. Commun.199018257262
    [Google Scholar]
  9. SilvaT.N. ThomasJ.B. DahlbergJ. RheeS.Y. MortimerJ.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy.J. Exp. Bot.202273364666410.1093/jxb/erab450 34644381
    [Google Scholar]
  10. LiuG. GildingE.K. GodwinI.D. A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench].S. Afr. J. Bot.20159815716010.1016/j.sajb.2015.03.179
    [Google Scholar]
  11. KaepplerH.F. PedersenJ.F. Media effects on phenotype of callus cultures initiated from photoperiod-insensitive, elite inbred sorghum lines.Maydica1996418389
    [Google Scholar]
  12. FlinnB. DaleS. DisharoonA. KresovichS. Comparative analysis of in vitro responses and regeneration between diverse bioenergy sorghum genotypes.Plants20209224810.3390/plants9020248 32075100
    [Google Scholar]
  13. SaiN.K. VisaradaK.B.R.S. LakshmiY.A. PashupatinathE. RaoS.V. SeetharamaN. In vitro culture methods in sorghum with shoot tip as the explant material.Plant Cell Rep.200625317418210.1007/s00299‑005‑0044‑y 16402251
    [Google Scholar]
  14. WangL GaoL LiuG MengR LiuY LiJ An efficient sorghum transformation system using embryogenic calli derived from mature seeds.PeerJ20219e1184910.7717/peerj.1184934430078
    [Google Scholar]
  15. CheP. WuE. SimonM.K. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum.Commun. Biol.20225134410.1038/s42003‑022‑03308‑w 35410430
    [Google Scholar]
  16. BrettellR.I.S. WernickeW. ThomasE. Embryogenesis from cultured immature inflorescences of Sorghum bicolor.Protoplasma19801041-214114810.1007/BF01279376
    [Google Scholar]
  17. ManiN.S. PolaS.R. Multiple shoot induction from immature inflorescence in Sorghum.Cytologia (Tokyo)200368219920410.1508/cytologia.68.199
    [Google Scholar]
  18. ThaddiB.N. PaidiR.R. UddandapuP.K. Deciphering genotype-specific hormonal responses: Implications for enhanced callus induction and regeneration in sorghum (Sorghum bicolor L. Moench).Afr J Biol Sci202461322562280
    [Google Scholar]
  19. KananiZ. MohammedS.E.T. Initiation of callus from different genotypes of Sorghum bicolor L. Moench.Afr. J. Agric. Res.2020154546552
    [Google Scholar]
  20. NaborsM.W. GrimesH.D. MollerM. In vitro culture of plant cells and tissues: A review.Plant Cell Tissue Organ Cult.198321114
    [Google Scholar]
  21. BelideS. VanherckeT. PetrieJ.R. SinghS.P. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos.Plant Methods201713110910.1186/s13007‑017‑0260‑9 29234458
    [Google Scholar]
  22. BensonE.E. Special symposium: In vitro plant recalcitrance. Do free radicals have a role in plant tissue culture recalcitrance?In vitro Cell. Dev. Biol. Plant200036316317010.1007/s11627‑000‑0032‑4
    [Google Scholar]
  23. NamasivayamP. Acquisition of embryogenic competence during somatic embryogenesis.Plant Cell Tissue Organ Cult.20079011810.1007/s11240‑007‑9249‑9
    [Google Scholar]
  24. BaskaranP. JayabalanN. A simple approach to improve plant regeneration from callus culture of Sorghum bicolor for crop improvement.J. Agric. Biotechnol.200511179192
    [Google Scholar]
  25. MaheswariM. Jyothi LakshmiN. YadavS.K. Efficient plant regeneration from shoot apices of sorghum.Biol. Plant.200650474174410.1007/s10535‑006‑0120‑3
    [Google Scholar]
  26. PolaS. SaradamaniN. RamanaT. Enhanced shoot regeneration in tissue culture studies of Sorghum bicolor.Agric. Technol. Thail.20073275286
    [Google Scholar]
  27. DregerM. MólR. DejaA. RajE. MańkowskaG. WielgusK. Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench.In vitro Cell. Dev. Biol. Plant201955219019810.1007/s11627‑019‑09963‑9
    [Google Scholar]
  28. LuwanskaA. DregerM. MankowskaG. MarszalekM. WielgusK. Regeneration of sorghum in cultures of isolated embryos.BioTechnologia2015961
    [Google Scholar]
  29. JogeswarG. RanadheerD. AnjaiahV. Kavi KishorP.B. High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants.In vitro Cell. Dev. Biol. Plant200743215916610.1007/s11627‑007‑9033‑x
    [Google Scholar]
  30. AmaliP. RamakrishnanM. KingsleyS.J. IgnacimuthuS. Direct regeneration potential of Sorghum bicolor (L.) Moench under the influence of plant growth regulators.Plant Cell Biotechnol. Mol. Biol.201415118126
    [Google Scholar]
  31. ChouJ. HuangJ. HuangY. Simple and efficient genetic transformation of sorghum using immature inflorescences.Acta Physiol. Plant.20204234110.1007/s11738‑020‑3023‑6
    [Google Scholar]
  32. AhmedR.I. RehmanS.U. AkhtarH.L. Optimization of in vitro responses of various explants sources in sorghum (Sorghum bicolor).Asian J. Agric. Biol.2022218
    [Google Scholar]
  33. AvciS. Development of an efficient regeneration system via somatic embryogenesis obtained from mature embryos in some grain and silage sorghum cultivars.Appl. Ecol. Environ. Res.20191711349135710.15666/aeer/1701_13491357
    [Google Scholar]
  34. LiuG. GildingE.K. GodwinI.D. Additive effects of three auxins and copper on sorghum in vitro root induction.In vitro Cell. Dev. Biol. Plant201349219119710.1007/s11627‑012‑9488‑2
    [Google Scholar]
  35. ArdabiliG.S. ZakariaR.A. ZareN. In vitro induction of polyploidy in Sorghum bicolor L.Cytologia201580449550310.1508/cytologia.80.495
    [Google Scholar]
/content/journals/biot/10.2174/0118722083362270250116101522
Loading
/content/journals/biot/10.2174/0118722083362270250116101522
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test