Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Introduction

Salinity is one of the primary environmental factors that significantly impact global crop production. Plant growth promoting rhizobacteria (PGPR) inoculation to crops improves the productivity of the crops.

Methods

To develop a biofertilizer specifically for saline soil, bacteria were isolated from the rhizosphere of mustard plants along with the plant growth-promoting traits grown in saline soil (EC 6 dS m). Halotolerant 22 bacterial strains were isolated and identified from the rhizospheric soil mustard crop, Purvanchal (Indian state). According to the study, 54.54% of the isolates had phosphate solubilization efficiencies ranging from 7% to 27% on plate assays. According to quantitative measurements, 63.63% of the strains exhibited the ability to solubilize phosphate, with degrees of solubilization varying between 0.49 and 3.34 µg/ml. Furthermore, 50% of the isolates showed the ability to solubilize zinc, with solubilization rates varying from 12% to 53%. Further 59.09% of the bacterial strains showed ammonium production test; these strains were classified as having low (+), medium (++), and high (+++) levels of ammonium production.

Results

According to the research, these halo-tolerant plant growth-promoting rhizobacteria (PGPR) have particular functional properties that may help mustard crops grow more rapidly in salinity-stressed environments. Because these PGPR strains increase nutrient availability and stimulate plant development, they may find use in agriculture, especially in saline settings.

Conclusion

The study emphasizes how crucial it is to use PGPR with particular nutrient mobilization features to promote crop growth under difficult circumstances. The identification of these efficient strains may lead to the development of patent biofertilizers designed for saline soils, further supporting their application in modern agricultural practices.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083354790250202145831
2025-02-11
2025-12-06
Loading full text...

Full text loading...

References

  1. SafdarH. AminA. ShafiqY. A review: Impact of salinity on plant growth.Nat. Sci.2019171344010.7537/marsnsj170119.06
    [Google Scholar]
  2. SinghJ. Chander SharmaP. SinghV. Breeding mustard (Brassica juncea) for salt tolerance: Problems and prospects.Brassica Breed Biotechnol20213698510.5772/intechopen.94551
    [Google Scholar]
  3. RoyS. ChowdhuryN. Chapter 19 - Salt Stress in Plants and Amelioration Strategies: A Critical Review.In: Abiotic Stress in Plants.London, UKIntechOpen202119355210.5772/intechopen.93552
    [Google Scholar]
  4. KumariB. MallickM.A. SolankiM.K. SolankiA.C. HoraA. GuoW. Plant growth promoting rhizobacteria (PGPR): Modern prospects for sustainable agriculture.Plant Heal Under Biot Stre Microbial Interact2019210912710.1007/978‑981‑13‑6040‑4_6
    [Google Scholar]
  5. TeoHM AA AWA Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review.Microorganisms202210365710.3390/microorganisms10030657 35336232
    [Google Scholar]
  6. RaiP.K. YadavP. KumarA. SharmaA. KumarV. RaiP. Brassica juncea: A crop for food and health.In: The Brassica juncea Genome.ChamSpringer International Publishing202211310.1007/978‑3‑030‑91507‑0_1
    [Google Scholar]
  7. ChandS. PatidarO. P. ChaudharyR. Diamondback moth ecology and management: Problems, progress, and prospects.Annu. Rev. Entomol.20215851754110.1146/annurev‑ento‑120811‑153605 23020617
    [Google Scholar]
  8. JanB. SajadS. ReshiZ. A. MohiddinF. Chapter 1 - Plant growth promoting rhizobacteria (PGPR): Ecofriendly approach for promoting sustainable agriculture. 1st Ed.Plant-Microbe Dynamics1st EdBoca Raton, FLCRC Press202216
    [Google Scholar]
  9. EtesamiH. AdlS. M. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants.In: Phyto-Microbiome in Stress Regulation Environmental and Microbial Biotechnology.SingaporeSpringer202014720310.1007/978‑981‑15‑2576‑6_9
    [Google Scholar]
  10. SharpleyA.N. SmithS.J. JonesO.R. The transport of bioavailable phosphorus in agricultural runoff.J. Environ. Qual.1992211303510.2134/jeq1992.00472425002100010003x
    [Google Scholar]
  11. WeiY. ZhaoY. ShiM. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.Bioresour. Technol.201824719019910.1016/j.biortech.2017.09.092 28950126
    [Google Scholar]
  12. Stefanoni RubioP.J. GodoyM.S. Della MónicaI.F. PettinariM.J. GodeasA.M. ScervinoJ.M. Carbon and nitrogen sources influence tricalcium phosphate solubilization and extracellular phosphatase activity by talaromyces flavus.Curr. Microbiol.2016721414710.1007/s00284‑015‑0914‑7 26407892
    [Google Scholar]
  13. GotetiP.K. EmmanuelL.D.A. DesaiS. Prospective zinc solubilizing bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.).Int. J. Microbiol.2013201386969710.1155/2013/869697 24489550
    [Google Scholar]
  14. ShilphaJ. SongJ. JeongB.R. Ammonium phytotoxicity and tolerance: An insight into ammonium nutrition to improve crop productivity.Agronomy (Basel)2023136148710.3390/agronomy13061487
    [Google Scholar]
  15. OleńskaE. MałekW. WójcikM. SwiecickaI. ThijsS. VangronsveldJ. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review.Sci. Total Environ.202074314068210.1016/j.scitotenv.2020.140682 32758827
    [Google Scholar]
  16. Hernández-CansecoJ. Bautista-CruzA. Sánchez-MendozaS. Aquino-BolañosT. Sánchez-MedinaP.S. Plant growth-promoting halobacteria and their ability to protect crops from abiotic stress: An eco-friendly alternative for saline soils.Agronomy (Basel)202212480410.3390/agronomy12040804
    [Google Scholar]
  17. KapadiaC. PatelN. RanaA. Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil.Front Plant Sci20221394621710.3389/fpls.2022.946217 35909789
    [Google Scholar]
  18. ReangL. BhattS. TomarR.S. Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat.Sci. Rep.2022121469910.1038/s41598‑022‑08151‑x 35304507
    [Google Scholar]
  19. PatraJ. K. DasG. DasS. K. Isolation, culture, and biochemical characterization of microbes.In: A practical guide to environmental biotechnology.SingaporeSpringer20208313310.1007/978‑981‑15‑6252‑5_4
    [Google Scholar]
  20. GuptaG. PariharS.S. AhirwarN.K. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture.J. Microb. Biochem. Technol.201572100018810.4172/1948‑5948.1000188
    [Google Scholar]
  21. FiskeC.H. SubbarowY. The colorimetric determination of phosphorus.J. Biol. Chem.192566237540010.1016/S0021‑9258(18)84756‑1
    [Google Scholar]
  22. SaravanakumarD. VijayakumarC. KumarN. PGPR-induced defense responses in the tea plant against blister blight disease.Crop Protect.200726455656510.1016/j.cropro.2006.05.007
    [Google Scholar]
  23. AL-AbediS. KhudaierBY. AL-AttraqchiAA. Evalution the antifungal activity of Lactobacillus against some isolates of Candida spp isolated from bovine mycotic mastitis.202016
    [Google Scholar]
  24. KhanamS. IslamM.S. HaqueM.S. SarminT. TopuM.A.M. Improving yield of salt tolerant rice varieties through silicon application.Banglad J Nucl Agric202033110
    [Google Scholar]
  25. JainD. BishtS. ParvezA. SinghK. BhaskarP. KoubourisG. Effective biotic elicitors for augmentation of secondary metabolite production in medicinal plants.Agriculture202414679610.3390/agriculture14060796
    [Google Scholar]
  26. TripathiA. PandeyV.K. JainD. Implications for sustainable agriculture: Recent insights on PGPR-induced plant signalling and stress management.J. Agric. Food Res.2024110116910.1016/j.jafr.2024.101169
    [Google Scholar]
  27. MitraD. SnežanaA. SnežanaA. Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: Current perspective.Int J Agricul Sci Veteri Medi2019725074
    [Google Scholar]
  28. EtesamiH. BeattieG.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops.Front. Microbiol.2018914810.3389/fmicb.2018.00148 29472908
    [Google Scholar]
  29. EtesamiH. MaheshwariD.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.Ecotoxicol. Environ. Saf.201815622524610.1016/j.ecoenv.2018.03.013 29554608
    [Google Scholar]
  30. OteinoN. LallyR.D. KiwanukaS. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates.Front. Microbiol.2015674510.3389/fmicb.2015.00745 26257721
    [Google Scholar]
  31. SharmaA. KiranR. Corporate social responsibility: driving forces and challenges.Int J Busi Res Develop201321182710.24102/ijbrd.v2i1.182
    [Google Scholar]
  32. VermaR.M. VermaR. auryaB.R. Integrated effect of bioorganics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var. capitata).Ind. J. Agric. Sci.201484891491910.56093/ijas.v84i8.43042
    [Google Scholar]
  33. KannahiM. KowsalyaM. Efficiency of plant growth promoting rhizobacteria for the enhancement of Vigna mungo growth.J. Chem. Pharma. Res.20135516
    [Google Scholar]
  34. RashidM. KhalilS. AyubN. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions.Pak. J. Biolog. Sci.20047218719610.3923/pjbs.2004.187.196
    [Google Scholar]
  35. EhteshamiS.M. RangelZ. AghaalikhaniM. The role of mycorrhizal fungi (Glomus intraradices L) on P uptake by wheat on soil types.Proceedings of the Second National Conference on Ecological Agriculture of Iran; 2007 Oct 25-26; Gorgan Iran, pp1-6
    [Google Scholar]
  36. OgutMehmet ErFatih KandemirNejdet Phosphate solubilization potentials of soil Acinetobacter strains.Biol. Fertil. Soil20104670771510.1007/s00374‑010‑0475‑7
    [Google Scholar]
  37. SharmaD.K. ChaudhariS.K. Agronomic research in salt affected soils of India: An overview.Ind J. Agron.2012571175185
    [Google Scholar]
  38. HafeezF.Y. Abaid-UllahM. HassanM.N. Plant growth-promoting rhizobacteria as zinc mobilizers: A promising approach for cereals biofortification.Bacteria in Agrobiology: Crop Productivity.Berlin, HeidelbergSpringer201321723510.1007/978‑3‑642‑37241‑4_9
    [Google Scholar]
  39. BalachanderM. SarojaM. VenkatalachalamM. KumarV. ParthasarathyG. Microstructure and optical properties of undoped and Ni-doped ZnS nanocrystallites.Thin Film Technol2016984270642708
    [Google Scholar]
  40. Gontia-MishraI. SapreS. TiwariS. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice.Rhizosphere2017318519010.1016/j.rhisph.2017.04.013
    [Google Scholar]
  41. MishraS. MishraD.R. LeeZ. TuckerC.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach.Remote Sens. Environ.201313314115110.1016/j.rse.2013.02.004
    [Google Scholar]
  42. SarathambalC. IlamuruguK. BalachandarD. ChinnaduraiC. GhardeY. Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India.Appl. Soil Ecol.20158711010.1016/j.apsoil.2014.11.004
    [Google Scholar]
  43. KumawatK.C. NagpalS. SharmaP. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review.Pedosphere202232222324510.1016/S1002‑0160(21)60070‑X
    [Google Scholar]
  44. MarquesA.P.G.C. PiresC. MoreiraH. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant.Soil Biol. Biochem.20104281229123510.1016/j.soilbio.2010.04.014
    [Google Scholar]
  45. LeBauerD.S. TresederK.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology200889237137910.1890/06‑2057.1 18409427
    [Google Scholar]
  46. CourtyP.E. SmithS. KoegelD. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions.Criti. Revi. Plant Sci.2015341-341610.1080/07352689.2014.897897
    [Google Scholar]
  47. MinaxiN. NainL. YadavR.C. SaxenaJ. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts.Appl. Soil Ecol.20125912413510.1016/j.apsoil.2011.08.001
    [Google Scholar]
  48. BitasV. KimH.S. BennettJ.W. KangS. Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health.Mol. Plant Microbe Interact.201326883584310.1094/MPMI‑10‑12‑0249‑CR 23581824
    [Google Scholar]
  49. ShuklaA.K. BeheraS.K. ShivayY.S. Micronutrients and field crop production in India: A review.Ind J. Agron.2012573123130
    [Google Scholar]
  50. QinY. DruzhininaI.S. PanX. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture.Biotechnol. Adv.20163471245125910.1016/j.biotechadv.2016.08.005 27587331
    [Google Scholar]
  51. Abd_AllahEF. AlqarawiAA. HashemA. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms.J Plan Interac2018131374410.1080/17429145.2017.1414321
    [Google Scholar]
  52. AlqarawiA.A. Abd AllahE.F. HashemA. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk.J. Plan Interac.20149180281010.1080/17429145.2014.949886
    [Google Scholar]
  53. Abd AllahE.F. EgamberdievaD. AlqarawiA.A. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status.Pak. J. Bot.20164813745
    [Google Scholar]
  54. SaghafiD. GhorbanpourM. LajayerB.A. Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress.J. Soil Sci. Plant Nutri.201818125326810.4067/S0718‑95162018005000903
    [Google Scholar]
  55. ChenL. LiuY. WuG. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.Physiol. Plant.20161581344410.1111/ppl.12441 26932244
    [Google Scholar]
  56. ParkB ShinS ZhangT Plant rhizosphere growthpromoting halotolerant bacterium powder and application thereof.CN Patent 116536182A2023
/content/journals/biot/10.2174/0118722083354790250202145831
Loading
/content/journals/biot/10.2174/0118722083354790250202145831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test