Skip to content
2000
image of From Potential to Reality: Unraveling the Factors Limiting the Use of Microalgae as Sustainable Blue Food Protein Sources - A Critical Review

Abstract

Microalgae are promising and sustainable sources of blue food proteins, offering high nutritional quality, environmental resilience, and the potential to meet the rising demand for alternative proteins. Despite these advantages, several challenges hinder their large-scale adoption, including production costs, regulatory barriers, protein extraction difficulties, and consumer perception. This review explores the key factors limiting the use of microalgae in the food industry, addressing economic and technological feasibility, regulatory aspects, and consumer acceptance. The analysis includes commonly used microalgae species, their nutritional profiles, and strategies for optimizing their incorporation into food products. Moreover, developing circular biorefineries and utilizing industrial wastewater for cultivation presents a viable solution to reduce costs and enhance sustainability. Additionally, advancements in protein extraction techniques, combined with technological innovations such as microencapsulation, may overcome sensory challenges, expanding consumer acceptance of microalgae-enriched products. Raising consumer awareness of the nutritional and environmental benefits of microalgae is also crucial for market adoption. Given the global need for sustainable food sources, microalgae represent a viable alternative but require scientific, regulatory, and strategic advancements, including the development and protection of innovative processes through patent filings, to become a widely adopted solution in the alternative protein industry.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083358276250703100020
2025-07-14
2025-11-05
Loading full text...

Full text loading...

References

  1. Tigchelaar M. Leape J. Micheli F. The vital roles of blue foods in the global food system. Glob. Food Secur. 2022 33 100637 10.1016/j.gfs.2022.100637
    [Google Scholar]
  2. Golden C.D. Koehn J.Z. Shepon A. Aquatic foods to nourish nations. Nature 2021 598 7880 315 320 10.1038/s41586‑021‑03917‑1 34526720
    [Google Scholar]
  3. Bennett A. Basurto X. Virdin J. Recognize fish as food in policy discourse and development funding. Ambio 2021 50 5 981 989 10.1007/s13280‑020‑01451‑4 33454882
    [Google Scholar]
  4. Crona B.I. Wassénius E. Jonell M. Four ways blue foods can help achieve food system ambitions across nations. Nature 2023 616 7955 104 112 10.1038/s41586‑023‑05737‑x 36813964
    [Google Scholar]
  5. Singh U.B. Ahluwalia A.S. Microalgae: A promising tool for carbon sequestration. Mitig. Adapt. Strategies Glob. Change 2013 18 1 73 95 10.1007/s11027‑012‑9393‑3
    [Google Scholar]
  6. Shalaby E. Algae as promising organisms for environment and health. Plant Signal. Behav. 2011 6 9 1338 1350 10.4161/psb.6.9.16779 21862867
    [Google Scholar]
  7. Ashraf N. Ahmad F. Lu Y. Synergy between microalgae and microbiome in polluted waters. Trends Microbiol. 2023 31 1 9 21 10.1016/j.tim.2022.06.004 35985939
    [Google Scholar]
  8. de Freitas Coêlho D. Tundisi L.L. Cerqueira K.S. da Silva Rodrigues J.R. Mazzola P.G. Tambourgi E.B. Microalgae: Cultivation aspects and bioactive compounds. Brazilian. Archiv. Biol. Technol. 2019 62 10.1590/1678‑4324‑2019180343
    [Google Scholar]
  9. Lafarga T. Acién G. Microalgae for the food industry: From biomass production to the development of functional foods. Foods 2022 11 5 765 10.3390/foods11050765 35267398
    [Google Scholar]
  10. Lu Q. Zhou W. Min M. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour. Technol. 2015 198 189 197 10.1016/j.biortech.2015.08.133 26386422
    [Google Scholar]
  11. Xu X. Gu X. Wang Z. Shatner W. Wang Z. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew. Sustain. Energy Rev. 2019 110 65 82 10.1016/j.rser.2019.04.050
    [Google Scholar]
  12. Wang Y. Tibbetts S. McGinn P. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021 10 12 3002 10.3390/foods10123002 34945551
    [Google Scholar]
  13. Verni M. Demarinis C. Rizzello C.G. Pontonio E. Bioprocessing to preserve and improve microalgae nutritional and functional potential: Novel insight and perspectives. Foods 2023 12 5 983 10.3390/foods12050983 36900500
    [Google Scholar]
  14. Weinrich R. Elshiewy O. A cross-country analysis of how food-related lifestyles impact consumers’ attitudes towards microalgae consumption. Algal Res. 2023 70 102999 10.1016/j.algal.2023.102999
    [Google Scholar]
  15. Lafarga T. Rodríguez-Bermúdez R. Morillas-España A. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 2021 54 102174 10.1016/j.algal.2020.102174
    [Google Scholar]
  16. Lafarga T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019 41 101566 10.1016/j.algal.2019.101566
    [Google Scholar]
  17. Novoveská L. Nielsen S.L. Eroldoğan O.T. Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar. Drugs 2023 21 8 445 10.3390/md21080445 37623726
    [Google Scholar]
  18. Ferdous U.T. Nurdin A. Ismail S. Balia Yusof Z.N. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. Biocatal. Agric. Biotechnol. 2023 47 102551 10.1016/j.bcab.2022.102551
    [Google Scholar]
  19. Ramesh Kumar B. Deviram G. Mathimani T. Duc P.A. Pugazhendhi A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019 17 583 588 10.1016/j.bcab.2019.01.017
    [Google Scholar]
  20. Caetano P.A. do Nascimento T.C. Fernandes A.S. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatal. Agric. Biotechnol. 2022 45 102491 10.1016/j.bcab.2022.102491
    [Google Scholar]
  21. Eze C.N. Onyejiaka C.K. Ihim S.A. Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiol. 2023 9 1 55 74 10.3934/microbiol.2023004 36891530
    [Google Scholar]
  22. Nawaz A. Chaudhry U.A. Badshah M. Khan S. Microalgal food biotechnology: Prospects and applications. In: Microalgal Biotechnology. Apple Academic Press 2023 1 26 10.1201/9781003332251‑8
    [Google Scholar]
  23. Fu Y. Chen T. Chen S.H.Y. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends Food Sci. Technol. 2021 112 188 200 10.1016/j.tifs.2021.03.050
    [Google Scholar]
  24. de Souza M.P. Hoeltz M. Gressler P.D. Benitez L.B. Schneider R.C.S. Potential of microalgal bioproducts: General perspectives and main challenges. Waste Biomass Valoriz. 2019 10 8 2139 2156 10.1007/s12649‑018‑0253‑6
    [Google Scholar]
  25. Lucakova S. Branyikova I. Hayes M. Microalgal proteins and bioactives for food, feed, and other applications. Appl. Sci. 2022 12 9 4402 10.3390/app12094402
    [Google Scholar]
  26. Nörnberg M.L. Pinheiro P.N. Nascimento T.C. Fernandes A.S. Lopes E.J. Zepka L.Q. Produção de biocompostos microalgais em diferentes condições de cultivo/Production of microalgae biocompounds in different cultivation conditions. Brazilian J Devel 2022 8 2 10226 10240 10.34117/bjdv8n2‑119
    [Google Scholar]
  27. Montevecchi G. Santunione G. Licciardello F. Köker Ö. Masino F. Antonelli A. Enrichment of wheat flour with Spirulina. Evaluation of thermal damage to essential amino acids during bread preparation. Food Res. Int. 2022 157 111357 10.1016/j.foodres.2022.111357 35761619
    [Google Scholar]
  28. Tiepo C.B.V. Gottardo F.M. Mortari L.M. Bertol C.D. Reinehr C.O. Colla L.M. Addition of Spirulina Platensis in handmade ice cream: Phisicochemical and sensory effects/Adição de Spirulina Platensis em sorvete caseiro: Efeitos físico-químicos e sensoriais. Brazilian Journal of Development 2021 7 9 88106 88123 10.34117/bjdv7n9‑121
    [Google Scholar]
  29. Lucas B.F. Morais M.G. Santos T.D. Costa J.A.V. Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. Lebensm. Wiss. Technol. 2018 90 270 276 10.1016/j.lwt.2017.12.032
    [Google Scholar]
  30. Bosnea L. Terpou A. Pappa E. Kondyli E. Mataragas M. Markou G. Incorporation of Spirulina Platensis on traditional greek soft cheese with respect to its nutritional and sensory perspectives. Proceedings 2021 70 1 99 10.3390/foods_2020‑07600
    [Google Scholar]
  31. Letras P. Oliveira S. Varela J. Nunes M.C. Raymundo A. 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Res. 2022 68 102863 10.1016/j.algal.2022.102863
    [Google Scholar]
  32. El-Baz K. Hussein M.S. Sayeda A.M. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. Int. J. Pharm. Sci. Rev. Res. 2017 2017 46
    [Google Scholar]
  33. Matos J. Afonso C. Cardoso C. Serralheiro M.L. Bandarra N.M. Yogurt enriched with isochrysis galbana: An innovative functional food. Foods 2021 10 7 1458 10.3390/foods10071458 34202539
    [Google Scholar]
  34. Caporgno M.P. Böcker L. Müssner C. Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innov. Food Sci. Emerg. Technol. 2020 59 102275 10.1016/j.ifset.2019.102275
    [Google Scholar]
  35. Zicari G. Carraro E. Bonetta S. The Regulation (EC) N. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Prog. Nutr. 2007 404 9 25
    [Google Scholar]
  36. Lähteenmäki-Uutela A. Rahikainen M. Lonkila A. Yang B. Alternative proteins and EU food law. Food Control 2021 130 108336 10.1016/j.foodcont.2021.108336
    [Google Scholar]
  37. Torres-Tiji Y. Fields F.J. Mayfield S.P. Microalgae as a future food source. Biotechnol. Adv. 2020 41 107536 10.1016/j.biotechadv.2020.107536 32194145
    [Google Scholar]
  38. Hernández H. Nunes M.C. Prista C. Raymundo A. Innovative and healthier dairy products through the addition of microalgae: A review. Foods 2022 11 5 755 10.3390/foods11050755 35267388
    [Google Scholar]
  39. Samarasiri M. Chai K.F. Chen W.N. Forward-looking risk assessment framework for novel foods. Food and Humanity 2023 1 500 513 10.1016/j.foohum.2023.06.020
    [Google Scholar]
  40. Machado L. Carvalho G. Pereira R.N. Effects of innovative processing methods on microalgae cell wall: Prospects towards digestibility of protein-rich biomass. Biomass 2022 2 2 80 102 10.3390/biomass2020006
    [Google Scholar]
  41. Zinkoné T.R. Gifuni I. Lavenant L. Pruvost J. Marchal L. Bead milling disruption kinetics of microalgae: Process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana. Bioresour. Technol. 2018 267 458 465 10.1016/j.biortech.2018.07.080 30036846
    [Google Scholar]
  42. Grossmann L. Hinrichs J. Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit. Rev. Food Sci. Nutr. 2020 60 17 2961 2989 10.1080/10408398.2019.1672137 31595777
    [Google Scholar]
  43. Giannoglou M. Andreou V. Thanou I. Markou G. Katsaros G. Kinetic study of the combined effect of high pressure and pH-value on Arthrospira Platensis (Spirulina) proteins extraction. Innov. Food Sci. Emerg. Technol. 2023 85 103331 10.1016/j.ifset.2023.103331
    [Google Scholar]
  44. Yucetepe A. A combination of osmotic shock and ultrasound pre-treatments and the use of enzyme for extraction of proteins from Chlorella vulgaris microalgae: Optimization of extraction conditions by RSM. J. Food Meas. Charact. 2022 16 2 1516 1527 10.1007/s11694‑021‑01258‑1
    [Google Scholar]
  45. Sun Z. Chi Q. Sun L. Liu Y. Protein extraction from microalgae residue and nutritional assessment. Bioprocess Biosyst. Eng. 2022 45 11 1879 1888 10.1007/s00449‑022‑02794‑w 36209452
    [Google Scholar]
  46. Anjos L. Estêvão J. Infante C. Mantecón L. Power D.M. Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX 2022 9 101637 10.1016/j.mex.2022.101637 35242618
    [Google Scholar]
  47. Siddiki S.Y.A. Mofijur M. Kumar P.S. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel 2022 307 121782 10.1016/j.fuel.2021.121782
    [Google Scholar]
  48. Niu Q. Prins W. Ronsse F. Microalgae fractionation and pyrolysis of extracted microalgae biopolymers. J. Anal. Appl. Pyrolysis 2023 172 106000 10.1016/j.jaap.2023.106000
    [Google Scholar]
  49. Motlagh S.R. Elgharbawy A.A. Khezri R. Harun R. Omar R. Ionic liquid-based microwave-assisted extraction of protein from Nannochloropsis sp. biomass. Biomass Convers. Biorefin. 2023 13 9 8327 8338 10.1007/s13399‑021‑01778‑2
    [Google Scholar]
  50. Soto-Sierra L. Wilken L.R. Mallawarachchi S. Nikolov Z.L. Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Res. 2021 55 102248 10.1016/j.algal.2021.102248
    [Google Scholar]
  51. Khawli F.A. Martí-Quijal F.J. Pallarés N. Barba F.J. Ferrer E. Ultrasound extraction mediated recovery of nutrients and antioxidant bioactive compounds from phaeodactylum tricornutum microalgae. Appl. Sci. 2021 11 4 1701 10.3390/app11041701
    [Google Scholar]
  52. Ahiahonu E.K. Anku W.W. Roopnarain A. Green E. Govender P.P. Serepa-Dlamini M.H. Bioprospecting wild South African microalgae as a potential third-generation biofuel feedstock, biological carbon-capture agent and for nutraceutical applications. Biomass Convers. Biorefin. 2023 13 8 6897 6912 10.1007/s13399‑021‑01675‑8
    [Google Scholar]
  53. Singh M. Trivedi N. Enamala M.K. Plant-based meat analogue (PBMA) as a sustainable food: A concise review. Eur. Food Res. Technol. 2021 247 10 2499 2526 10.1007/s00217‑021‑03810‑1
    [Google Scholar]
  54. Kumar B.R. Mathimani T. Sudhakar M.P. A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renew. Sustain. Energy Rev. 2021 138 110649 10.1016/j.rser.2020.110649
    [Google Scholar]
  55. Schetinger L.C. Nörnberg M.L. Caetano P.A. Zepka L.Q. A timeline on microalgal biotechnology. Microalgae-Based Systems. Berlin. Boston De Gruyter 2023 1 18 10.1515/9783110781267‑001
    [Google Scholar]
  56. Fernandes A.S. Schetinger L.C. Nornberg M.L. do Nascimento T.C. Microalgae as a key ingredient in meat analogues. In: Handbook of Food and Feed from Microalgae: Production, Application, Regulation, and Sustainability. Academic Press 2023 305 316 10.1016/B978‑0‑323‑99196‑4.00046‑2
    [Google Scholar]
  57. Andrade B.B. Cardoso L.G. Assis D.J. Costa J.A.V. Druzian J.I. da Cunha Lima S.T. Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresour. Technol. 2019 284 340 348 10.1016/j.biortech.2019.03.144 30954902
    [Google Scholar]
  58. Boukid F. Rosell C.M. Rosene S. Bover-Cid S. Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2022 62 23 6390 6420 10.1080/10408398.2021.1901649 33775185
    [Google Scholar]
  59. Maehle N. Skjeret F. Microalgae-based food: Purchase intentions and willingness to pay. Future Foods 2022 6 100205 10.1016/j.fufo.2022.100205
    [Google Scholar]
  60. Caporgno M.P. Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018 5 58 10.3389/fnut.2018.00058 30109233
    [Google Scholar]
  61. Phillips G.O. Williams P.A. Handbook of food proteins. Woodhead Publishing Series 2011 10.1533/9780857093639
    [Google Scholar]
  62. Kumar R. Hegde A.S. Sharma K. Parmar P. Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res. Int. 2022 157 111338 10.1016/j.foodres.2022.111338 35761613
    [Google Scholar]
  63. Coleman B. Van Poucke C. Dewitte B. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 2022 5 100139 10.1016/j.fufo.2022.100139
    [Google Scholar]
  64. Sun J. Mausz M.A. Chen Y. Giovannoni S.J. Microbial trimethylamine metabolism in marine environments. Environ. Microbiol. 2019 21 2 513 520 10.1111/1462‑2920.14461 30370577
    [Google Scholar]
  65. García J.L. de Vicente M. Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017 10 5 1017 1024 10.1111/1751‑7915.12800 28809450
    [Google Scholar]
  66. van Bussel L.M. Kuijsten A. Mars M. van ’t Veer P. Consumers’ perceptions on food-related sustainability: A systematic review. J. Clean. Prod. 2022 341 130904 10.1016/j.jclepro.2022.130904
    [Google Scholar]
  67. Van der Stricht H. Profeta A. Hung Y. Verbeke W. Consumers’ willingness-to-buy pasta with microalgae proteins – Which label can promote sales? Food Qual. Prefer. 2023 110 104948 10.1016/j.foodqual.2023.104948
    [Google Scholar]
  68. Lafarga T. Pieroni C. D’Imporzano G. Maggioni L. Adani F. Acién G. Consumer attitudes towards microalgae production and microalgae-based agricultural products: The cases of almería (spain) and livorno (italy). ChemEngineering 2021 5 2 27 10.3390/chemengineering5020027
    [Google Scholar]
  69. Sanjari S. Sarhadi H. Shahdadi F. Investigating the effect of Spirulina Platensis microalgae on textural and sensory properties of baguette bread. J Nutrition Food Security 2018 3 10.18502/jnfs.v3i4.166
    [Google Scholar]
  70. da Silva S.P. do Valle A.F. Perrone D. Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. Lebensm. Wiss. Technol. 2021 142 110997 10.1016/j.lwt.2021.110997
    [Google Scholar]
  71. Nourmohammadi N. Soleimanian-Zad S. Shekarchizadeh H. Effect of Spirulina (Arthrospira platensis) microencapsulated in alginate and whey protein concentrate addition on physicochemical and organoleptic properties of functional stirred yogurt. J. Sci. Food Agric. 2020 100 14 5260 5268 10.1002/jsfa.10576 32520419
    [Google Scholar]
  72. Wassmann B. Hartmann C. Siegrist M. Novel microalgae-based foods: What influences Singaporean consumers’ acceptance? Food Qual. Prefer. 2024 113 105068 10.1016/j.foodqual.2023.105068
    [Google Scholar]
  73. Islam M.S. Kabir K.M.A. Islam M.S. Saha B.B. The Perception of consumers towards microalgae as an alternative food resource in bangladesh: A contingent valuation approach. Evergreen 2023 10 1 1 17 10.5109/6781028
    [Google Scholar]
  74. Wahyuningtyas A.S.H. Abidin Z. Putri W.D.R. Maligan J.M. Berlian G.O. Ningrum P.F.W. Consumer’s willingness to try new microalgae-based food in Indonesia. J. Agric. Food Res. 2024 18 101367 10.1016/j.jafr.2024.101367
    [Google Scholar]
  75. Silva E.F. Bianchini C.B. Wanderley B.R.S.M. Fritzen-Freire C.B. Bezerra P.Q.M. Nunes I.L. Analysis of the knowledge and attitudes of Brazilian consumers regarding microalgae: A strategy to assess the development potential of new foods. Food Sci. Technol. (Campinas) 2024 44 10.5327/fst.000365
    [Google Scholar]
  76. Wojciechowska J.E. Social responsibility of the modern family towards climate threats in the Anthropocene era. Fam Upbringing 2023 30 4 329 344 10.61905/wwr/183494
    [Google Scholar]
  77. Wesseler J. von Braun J. Measuring the bioeconomy: Economics and policies. Annu. Rev. Resour. Econ. 2017 9 1 275 298 10.1146/annurev‑resource‑100516‑053701
    [Google Scholar]
  78. Fernández F.G.A. Reis A. Wijffels R.H. Barbosa M. Verdelho V. Llamas B. The role of microalgae in the bioeconomy. N. Biotechnol. 2021 61 99 107 10.1016/j.nbt.2020.11.011 33249179
    [Google Scholar]
  79. Tan E.C.D. Lamers P. Circular bioeconomy concepts: A perspective. Front Sust 2021 2 701509 10.3389/frsus.2021.701509
    [Google Scholar]
  80. Rodrigues Dias R. Deprá M.C. Ragagnin de Menezes C. Queiroz Zepka L. Jacob-Lopes E. The high-value product, bio-waste, and eco-friendly energy as the tripod of the microalgae biorefinery: connecting the dots. Sustainability 2023 15 15 11494 10.3390/su151511494
    [Google Scholar]
  81. Dias R.R. Deprá M.C. Zepka L.Q. Jacob-Lopes E. Roadmap to net-zero carbon emissions in commercial microalgae-based products: environmental sustainability and carbon offset costs. J. Appl. Phycol. 2022 34 3 1255 1268 10.1007/s10811‑022‑02725‑y
    [Google Scholar]
  82. Fishery F.A.O. Fishery and aquaculture statistics. Global aquaculture production 1950–2021 (FishStatJ) FAO Fisheries and Aquaculture Division. 2023 https://www.fao.org/fishery/statistics-query/en/global_production/global_production_quantity
    [Google Scholar]
  83. Gourdon J. Stone S. Non-tariff measures in agriculture. OECD Food, Agricultureand Fisheries Papers 2020 10.1007/s10811‑022‑02725‑y
    [Google Scholar]
  84. Anderson K. Rausser G. Swinnen J. Political economy of public policies: Insights from distortions to agricultural and food markets. J. Econ. Lit. 2013 51 2 423 477 10.1257/jel.51.2.423
    [Google Scholar]
  85. Gilbert R. Costlow L. Matteson J. Trade policy reform, retail food prices and access to healthy diets worldwide. World Dev. 2024 177 106535 10.1016/j.worlddev.2024.106535 38693961
    [Google Scholar]
  86. Janssen M. Wijffels R.H. Barbosa M.J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 2022 75 102705 10.1016/j.copbio.2022.102705 35231772
    [Google Scholar]
  87. Ruiz J. Olivieri G. de Vree J. Towards industrial products from microalgae. Energy Environ. Sci. 2016 9 10 3036 3043 10.1039/C6EE01493C
    [Google Scholar]
  88. Slegers P.M. Olivieri G. Breitmayer E. Design of value chains for microalgal biorefinery at industrial scale: process integration and techno-economic analysis. Front. Bioeng. Biotechnol. 2020 8 550758 10.3389/fbioe.2020.550758 33015014
    [Google Scholar]
  89. Nappa M. Lienemann M. Tossi C. Solar-powered carbon fixation for food and feed production using microorganisms: A comparative techno-economic analysis. ACS Omega 2020 5 51 33242 33252 10.1021/acsomega.0c04926 33403286
    [Google Scholar]
  90. Voutilainen E. Pihlajaniemi V. Parviainen T. Economic comparison of food protein production with single-cell organisms from lignocellulose side-streams. Bioresour. Technol. Rep. 2021 14 100683 10.1016/j.biteb.2021.100683
    [Google Scholar]
  91. Arashiro L.T. Josa I. Ferrer I. Van Hulle S.W.H. Rousseau D.P.L. Garfí M. Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas. Sci. Total Environ. 2022 847 157615 10.1016/j.scitotenv.2022.157615 35901897
    [Google Scholar]
  92. Singh B.K. Bardgett R.D. Smith P. Reay D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010 8 11 779 790 10.1038/nrmicro2439 20948551
    [Google Scholar]
  93. Schade S. Meier T. A comparative analysis of the environmental impacts of cultivating microalgae in different production systems and climatic zones: A systematic review and meta-analysis. Algal Res. 2019 40 101485 10.1016/j.algal.2019.101485
    [Google Scholar]
  94. Osman A.I. Chen L. Yang M. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023 21 2 741 764 10.1007/s10311‑022‑01532‑8
    [Google Scholar]
  95. Usher P.K. Ross A.B. Camargo-Valero M.A. Tomlin A.S. Gale W.F. An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 2014 5 3 331 349 10.1080/17597269.2014.913925
    [Google Scholar]
  96. Tzachor A. Richards C.E. Holt L. Future foods for risk-resilient diets. Nat. Food 2021 2 5 326 329 10.1038/s43016‑021‑00269‑x 37117717
    [Google Scholar]
  97. Beal C.M. Gerber L.N. Sills D.L. Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Res. 2015 10 266 279 10.1016/j.algal.2015.04.017
    [Google Scholar]
  98. Ahmad A. Ashraf S.S. Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Res. 2023 74 103185 10.1016/j.algal.2023.103185
    [Google Scholar]
  99. Chen Y. Liang H. Du H. Jesumani V. He W. Cheong K.L. Industry chain and challenges of microalgal food industry: A review. Crit. Rev. Food Sci. Nutr. 2022 64 14 10.1080/10408398.2022.2145455 36377724
    [Google Scholar]
  100. Barbosa M.J. Janssen M. Südfeld C. D’Adamo S. Wijffels R.H. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 2023 41 3 452 471 10.1016/j.tibtech.2022.12.017 36707271
    [Google Scholar]
  101. Parkavi K. Raja R. Arunkumar K. Coelho A. Hemaiswarya S. Carvalho I.S. Recent insights into algal biotechnology. Encyclopedia of Marine Biotechnology. Wiley 2020 10.1002/9781119143802.ch19
    [Google Scholar]
  102. Osman M.E.H. Abo-Shady A.M. Gheda S.F. Desoki S.M. Elshobary M.E. Unlocking the potential of microalgae cultivated on wastewater combined with salinity stress to improve biodiesel production. Environ. Sci. Pollut. Res. Int. 2023 30 53 114610 114624 10.1007/s11356‑023‑30370‑6 37863854
    [Google Scholar]
  103. Kumar Y Kaur S Kheto A Cultivation of microalgae on food waste: Recent advances and way forward. Bioresour Technol 2022 363 127834 10.1016/j.biortech.2022.127834 36029984
    [Google Scholar]
  104. Weijiang L Zuoqi Z Huaijuan Z Large-scale cultivation method of Spirulina CN116640686A 2023
    [Google Scholar]
/content/journals/biot/10.2174/0118722083358276250703100020
Loading
/content/journals/biot/10.2174/0118722083358276250703100020
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: protein extraction ; large-scale ; Microalgae ; patent ; blue food ; biorefineries ; microencapsulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test