Skip to content
2000
image of Recent Patents of Stent Grafts for Intravascular Aortic Repair

Abstract

Introduction

Endovascular aortic repair involves the placement of stents through minimally invasive methods to seal rupture sites near the aortic inflow tract, thereby preventing blood entry into the false lumen and promoting thrombosis, which reduces the risk of aortic rupture. Endovascular stents typically consist of a metal framework and a flexible membrane graft designed to reopen obstructed aortic segments and maintain blood flow through the true lumen. Consequently, stents are widely used to treat aortic expansion diseases and aortic occlusive stenosis. However, traditional stents have limitations in terms of adaptability to complex anatomical structures, long-term durability, biomechanical stability, and reliance on radial support force for fixation, lacking active fixation mechanisms. These shortcomings remain the primary causes of postoperative complications, significantly impacting the quality of life for patients with aortic dissection.

Methods

Integrating patent and academic literature, the research status of the endovascular stent was discussed in depth, and the main factors for the optimal design of the stent (geometry, pattern configuration, additional fixtures, and optimization methods) were analyzed and summarized according to the complications targeted by the repair device.

Results

The composition structure, working principle, and development status of the stent grafts under review are elaborated in detail. Stent grafts attempt to alleviate postoperative complications through three approaches: enhancing the flexibility of the stent framework, improving the fit between the vessel wall and the stent, and reducing vascular injury. Blood flow guiding channels are established to alleviate the obstruction of branch blood flow. Additional self-anchoring devices are added to adapt to the dynamic remodeling of blood vessels.

Discussion

The effects of various factors, including geometric parameters, structural design, and parameter optimization techniques, on the optimization of stent primary mechanical performance are discussed. The current research status of functional improvement methods for stents is also summarized.

Conclusion

Refining the quantitative relationship between stent structural parameters and mechanical performance, as well as exploring the balance criteria between flexibility and radial support force, represent promising directions for future development. These objectives necessitate further in-depth analysis and research.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083355380250716073539
2025-07-23
2025-09-01
Loading full text...

Full text loading...

References

  1. Li G. Li J. Deng H. Wei X. Li N. Differences in in-hospital and follow-up outcomes between non-A Non-B aortic dissection and type B aortic dissection treated by endovascular based treatment. Vasc. Endovascular Surg. 2024 58 6 602 610 10.1177/15385744241249293 38649827
    [Google Scholar]
  2. LeMaire S.A. Russell L. Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol. 2011 8 2 103 113 10.1038/nrcardio.2010.187 21173794
    [Google Scholar]
  3. Yin Z.Q. Han H. Yan X. Zheng Q.J. Research progress on the pathogenesis of aortic dissection. Curr. Probl. Cardiol. 2023 48 8 101249 10.1016/j.cpcardiol.2022.101249 35568084
    [Google Scholar]
  4. Nienaber C.A. Clough R.E. Sakalihasan N. Suzuki T. Gibbs R. Mussa F. Jenkins M.P. Thompson M.M. Evangelista A. Yeh J.S.M. Cheshire N. Rosendahl U. Pepper J. Aortic dissection. Nat. Rev. Dis. Primers 2016 2 1 16053 10.1038/nrdp.2016.53 27440162
    [Google Scholar]
  5. Silaschi M. Byrne J. Wendler O. Aortic dissection: Medical, interventional and surgical management. Heart 2017 103 1 78 87 10.1136/heartjnl‑2015‑308284 27733536
    [Google Scholar]
  6. Hu S.S. Aortic disease and peripheral artery disease. J. Geriatr. Cardiol. 2024 21 10 931 943 10.26599/1671‑5411.2024.10.008 39619360
    [Google Scholar]
  7. Payne D. Böckler D. Weaver F. Milner R. Magee G.A. Azizzadeh A. Trimarchi S. Gable D. Five-year outcomes of endovascular treatment for aortic dissection from the global registry for endovascular aortic treatment. J. Vasc. Surg. 2024 80 4 1035 1044 10.1016/j.jvs.2024.05.055 38825212
    [Google Scholar]
  8. Hsieh R.W. Hsu T.C. Lee M. Hsu W.T. Chen S.T. Huang A.H. Hsieh A.L. Lee C.C. Comparison of type B dissection by open, endovascular, and medical treatments. J. Vasc. Surg. 2019 70 6 1792 1800.e3 10.1016/j.jvs.2019.02.062 31176640
    [Google Scholar]
  9. Jones A.D. Waduud M.A. Walker P. Stocken D. Bailey M.A. Scott D.J.A. Meta‐analysis of fenestrated endovascular aneurysm repair versus open surgical repair of juxtarenal abdominal aortic aneurysms over the last 10 years. BJS Open 2019 3 5 572 584 10.1002/bjs5.50178 31592091
    [Google Scholar]
  10. Canonge J. Jayet J. Heim F. Chakfé N. Coggia M. Coscas R. Cochennec F. Comprehensive review of physician modified aortic stent grafts: Technical and clinical outcomes. Eur. J. Vasc. Endovasc. Surg. 2021 61 4 560 569 10.1016/j.ejvs.2021.01.019 33589325
    [Google Scholar]
  11. Rovas G. Reymond P. Steenberghe M.V. Diaper J. Bikia V. Cikirikcioglu M. Habre W. Huber C. Stergiopulos N. In vivo evaluation of a novel compliance-matching vascular graft. bioRxiv 2023 2023.11 10.1101/2023.11.10.566623
    [Google Scholar]
  12. Braverman A.C. Aortic dissection in marfan syndrome. J. Am. Coll. Cardiol. 2023 82 21 2018 2020 10.1016/j.jacc.2023.08.054 37930286
    [Google Scholar]
  13. Vanmaele A. Rastogi V. Oliveira-Pinto J. ten Raa S. van Rijn M.J.E. Gonçalves F.B. de Bruin J.L. Verhagen H.J. Single centre evaluation of the proposal of the European society for vascular surgery abdominal aortic aneurysm guidelines to stratify surveillance after endovascular aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 2025 S1078-5884 00113-3 10.1016/j.ejvs.2025.01.042 39909310
    [Google Scholar]
  14. Ierardi A.M. Pesapane F. Patella F. Fumarola E.M. Angileri S.A. Petrillo M. Crippa M. Carrafiello G. Operative management of type II endoleaks after aortic endovascular repair. In: Visceral Vessels and Aortic Repair Springer Cham 2019 10.1007/978‑3‑319‑94761‑7_9
    [Google Scholar]
  15. Chun J.Y. de Haan M. Maleux G. Osman A. Cannavale A. Morgan R. CIRSE standards of practice on management of endoleaks following endovascular aneurysm repair. Cardiovasc. Intervent. Radiol. 2024 47 2 161 176 10.1007/s00270‑023‑03629‑1 38216742
    [Google Scholar]
  16. Kim H.O. Yim N.Y. Kim J.K. Kang Y.J. Lee B.C. Endovascular aneurysm repair for abdominal aortic aneurysm: A comprehensive review. Korean J. Radiol. 2019 20 8 1247 1265 10.3348/kjr.2018.0927 31339013
    [Google Scholar]
  17. Canonge J. Heim F. Chakfé N. Coscas R. Cochennec F. Jayet J. Mechanical performance assessment of physician modified aortic stent graft. Eur. J. Vasc. Endovasc. Surg. 2023 65 3 435 443 10.1016/j.ejvs.2022.11.004 36343747
    [Google Scholar]
  18. Van Gerwen A. Gallala S. Kerselaers L. Aerden D. Debing E. Stentgraft limb occlusion after endovascular aneurysm repair: Incidence and risk factors. Vasc. Endovascular Surg. 2024 58 1 34 41 10.1177/15385744231186276 37400356
    [Google Scholar]
  19. Zhang L. Li N. Zhang X. Liu X. Chen L. Liang B. Sun W. Shi H. Computed tomography angiography-confirmed aortic in-stents floating thrombus after endovascular stenting: A retrospective study. Quant. Imaging Med. Surg. 2024 14 3 2556 2567 10.21037/qims‑23‑1446 38545074
    [Google Scholar]
  20. Khan O.F. Sefton M.V. Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol. 2011 29 8 379 387 10.1016/j.tibtech.2011.03.004 21549438
    [Google Scholar]
  21. Pan C. Han Y. Lu J. Structural design of vascular stents: A review. Micromachines 2021 12 7 770 10.3390/mi12070770 34210099
    [Google Scholar]
  22. Mi H.Y. Jiang Y. Jing X. Enriquez E. Li H. Li Q. Turng L.S. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater. Sci. Eng. C 2019 98 241 249 10.1016/j.msec.2018.12.126 30813024
    [Google Scholar]
  23. Zia A.W. Liu R. Wu X. Structural design and mechanical performance of composite vascular grafts. Biodes. Manuf. 2022 5 4 757 785 10.1007/s42242‑022‑00201‑7
    [Google Scholar]
  24. Acher C. Acher C.W. Marks E. Wynn M. Intraoperative neuroprotective interventions prevent spinal cord ischemia and injury in thoracic endovascular aortic repair. J. Vasc. Surg. 2016 63 6 1458 1465 10.1016/j.jvs.2015.12.062 26968081
    [Google Scholar]
  25. Montandrau O. Weisslinger S.J. Philip I. Koskas F. Beaussier M. Perioperative spinal cord ischemia in thoracoabdominal aortic surgery: Status report in 2024. Prat. Anesth. Réanim. 2024 28 2 86 94 10.1016/j.pratan.2024.03.008
    [Google Scholar]
  26. Chen S.W. Lee K.B. Napolitano M.A. Murillo-Berlioz A.E. Sattah A.P. Sarin S. Trachiotis G. Complications and management of the thoracic endovascular aortic repair. Aorta 2020 8 3 49 58 10.1055/s‑0040‑1714089 33152785
    [Google Scholar]
  27. Goh J.H.F. Hwang N.C. Stent graft-induced aortic wall injury—anesthesia pitfalls and pearls for the thoracic endovascular aortic repair procedure. J. Cardiothorac. Vasc. Anesth. 2023 37 5 683 686 10.1053/j.jvca.2023.01.017 36822890
    [Google Scholar]
  28. Charlton-Ouw K.M. Ikeno Y. Bokamper M. Zakhary E. Smeds M.R. Aortic endograft sizing and endoleak, reintervention, and mortality following endovascular aneurysm repair. J. Vasc. Surg. 2021 74 5 1519 1526.e2 10.1016/j.jvs.2021.04.045 33940075
    [Google Scholar]
  29. Kyodo A. Okura H. Okamura A. Iwai S. Kamon D. Hashimoto Y. Ueda T. Soeda T. Watanabe M. Saito Y. Incidence and characteristics of incomplete stent apposition in calcified lesions: An optical coherence tomography study. Cardiovasc. Revasc. Med. 2022 41 55 60 10.1016/j.carrev.2021.12.032 34998648
    [Google Scholar]
  30. Daye D. Walker T.G. Complications of endovascular aneurysm repair of the thoracic and abdominal aorta: Evaluation and management. Cardiovasc. Diagn. Ther. 2018 8 Suppl 1 S138 S156 10.21037/cdt.2017.09.17 29850426
    [Google Scholar]
  31. Xiang D. Chai B. Huang J. Liang H. Liang B. Zhao H. Zheng C. The impact of oversizing in thoracic endovascular aortic repair on long-term outcomes in uncomplicated type B aortic dissection: A single-center retrospective study. J. Endovasc. Ther. 2024 31 5 862 872 10.1177/15266028231166282 37078474
    [Google Scholar]
  32. Bae M. Jeon C.H. Optimal sizing of aortic stent graft for blunt thoracic aortic injury considering hypotension-related decrease in aortic diameter. J. Endovasc. Ther. 2024 31 4 651 657 10.1177/15266028221134894 36342200
    [Google Scholar]
  33. Stavropoulos S.W. Charagundla S.R. Imaging techniques for detection and management of endoleaks after endovascular aortic aneurysm repair. Radiology 2007 243 3 641 655 10.1148/radiol.2433051649 17517926
    [Google Scholar]
  34. Verhoeven E.L.G. Katsargyris A. Bachoo P. Larzon T. Fisher R. Ettles D. Boyle J.R. Brunkwall J. Böckler D. Florek H.J. Stella A. Kasprzak P. Verhagen H. Riambau V. Real-world performance of the new C3 Gore Excluder stent-graft: 1-year results from the European C3 module of the global registry for endovascular aortic treatment (GREAT). Eur. J. Vasc. Endovasc. Surg. 2014 48 2 131 137 10.1016/j.ejvs.2014.04.009 24878234
    [Google Scholar]
  35. Skrypnik D. Kalmykov E. Bischoff M.S. Meisenbacher K. Klotz R. Hagedorn M. Kalkum E. Probst P. Dammrau R. Böckler D. Late endograft migration after thoracic endovascular aortic repair: A systematic review and meta-analysis. J. Endovasc. Ther. 2024 31 1 7 18 10.1177/15266028221109455 35822261
    [Google Scholar]
  36. Kamada K. Shingaki M. Nakanishi K. Ishikawa K. Koya A. Morishita K. Stent graft migration due to structural failure nine months after thoracic endovascular aortic repair using valiant navion. EJVES Vasc Forum 2023 60 77 80 10.1016/j.ejvsvf.2023.10.002 38035119
    [Google Scholar]
  37. Thomas W.R. Karkhanis S. Hopkins J. Duddy M. Translumbar embolization of type II endoleaks: 12 years of experience at a regional vascular centre. Vasc. Endovascular Surg. 2020 54 5 389 394 10.1177/1538574420918972 32281501
    [Google Scholar]
  38. Parsa P. Das Gupta J. McNally M. Chandra V. Endotension: What do we know and not know about this enigmatic complication of endovascular aneurysm repair. J. Vasc. Surg. 2021 74 2 639 645 10.1016/j.jvs.2021.03.018 33813025
    [Google Scholar]
  39. Gozzo C. Caruana G. Cannella R. Farina A. Giambelluca D. Dinoto E. Vernuccio F. Basile A. Midiri M. CT angiography for the assessment of EVAR complications: A pictorial review. Insights Imaging 2022 13 1 5 10.1186/s13244‑021‑01112‑4 35032231
    [Google Scholar]
  40. Aucoin V.J. Motyl C.M. Novak Z. Eagleton M.J. Farber M.A. Gasper W. Oderich G.S. Mendes B. Schanzer A. Tenorio E. Timaran C.H. Schneider D.B. Sweet M.P. Zettervall S.L. Beck A.W. Predictors and outcomes of spinal cord injury following complex branched/fenestrated endovascular aortic repair in the US Aortic Research Consortium. J. Vasc. Surg. 2023 77 6 1578 1587 10.1016/j.jvs.2023.01.205 37059239
    [Google Scholar]
  41. Yazar O. Willems S. Salemans P.B. Wong C.Y. van Grinsven B. Bouwman L.H. Treatment of Aortoiliac Aneurysms: Compatibility of the E-liac Stent Graft (Artivion®, Iliac Branch Device) with Endurant II or IIs (Medtronic®, EVAR). Cardiovasc. Intervent. Radiol. 2023 46 2 187 193 10.1007/s00270‑022‑03352‑3 36624291
    [Google Scholar]
  42. van Zeggeren L. Bastos Gonçalves F. van Herwaarden J.A. Zandvoort H.J.A. Werson D.A.B. Vos J.A. Moll F.L. Verhagen H.J. de Vries J.P.P.M. Incidence and treatment results of Endurant endograft occlusion. J. Vasc. Surg. 2013 57 5 1246 1254 10.1016/j.jvs.2012.11.069 23395203
    [Google Scholar]
  43. Basra M. Hussain P. Li M. Kulkarni S. Stather P.W. Armon M. Choksy S. Factors related to limb occlusion after endovascular abdominal aortic aneurysm repair (EVAR). Ann. Vasc. Surg. 2024 99 312 319 10.1016/j.avsg.2023.08.035 37858668
    [Google Scholar]
  44. Kouvelos G. Nana P. Brodis A. Spanos K. Tasoudis P. Katsargyris A. Verhoeven E. A meta-analysis of mid-term outcomes of endovascular aneurysm sealing. J. Endovasc. Ther. 2023 30 5 664 675 10.1177/15266028221098706 35674455
    [Google Scholar]
  45. Battista F. Ficarelli R. Perrotta A. Gualtieri P. Casciola C.M. Romano G.P. Taurino M. The fluid-dynamics of endo vascular aneurysm sealing (EVAS) system failure. Cardiovasc. Eng. Technol. 2021 12 3 300 310 10.1007/s13239‑021‑00520‑3 33565030
    [Google Scholar]
  46. Chaikof E.L. Dalman R.L. Eskandari M.K. Jackson B.M. Lee W.A. Mansour M.A. Mastracci T.M. Mell M. Murad M.H. Nguyen L.L. Oderich G.S. Patel M.S. Schermerhorn M.L. Starnes B.W. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018 67 1 2 77.e2 10.1016/j.jvs.2017.10.044 29268916
    [Google Scholar]
  47. Aras T. Tayeh M. Aswad A. Sharkawy M. Majd P. Exploring type IIIb Endoleaks: A literature review to identify possible physical mechanisms and implications. J. Clin. Med. 2024 13 15 4293 10.3390/jcm13154293 39124560
    [Google Scholar]
  48. Roeder B.A. Kratzberg J. Dierking W.K. Rasmussen E.E. Oehlenschlaeger B. Jensen K.M. Low profile non-symmetrical bare alignment stents with graft. U.S. Patent 20090306763 2009
  49. Fu W. Wang Y. Li J. Zhang T. Plastic covered stent for aortic dissection and aortic dissection stent. U.S. Patent 10874533 2020
  50. Wang Y. Fu W. Li J. Zhang T. Aortic bare stent and aortic dissection stent. U.S. Patent 10799375 2020
  51. Hofferberth S.C. Foley P.T. Newcomb A.E. Yap K.K. Yii M.Y. Nixon I.K. Wilson A.M. Mossop P.J. Combined proximal endografting with distal bare-metal stenting for management of aortic dissection. Ann. Thorac. Surg. 2012 93 1 95 102 10.1016/j.athoracsur.2011.06.106 22133900
    [Google Scholar]
  52. Lombardi J.V. Cambria R.P. Nienaber C.A. Chiesa R. Teebken O. Lee A. Mossop P. Bharadwaj P. Prospective multicenter clinical trial (STABLE) on the endovascular treatment of complicated type B aortic dissection using a composite device design. J. Vasc. Surg. 2012 55 3 629 640.e2 10.1016/j.jvs.2011.10.022 22169668
    [Google Scholar]
  53. Wang Y. Liu C. Zhang D. Thoracic aortic covered stent. EP. Patent 3075352 2021
  54. Kaji S. Acute medical management of aortic dissection. Gen. Thorac. Cardiovasc. Surg. 2019 67 2 203 207 10.1007/s11748‑018‑1030‑y 30456591
    [Google Scholar]
  55. Solovay K.S. Letendre R.P. Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm. U.S. Patent 006290731 2001
  56. Schulick A. Singh D. Stent and method of stenting an abdominal aortic aneurysm. U.S. Patent 11419714 2022
  57. Mitra A. Novel device for treatment of aortic dissections. W.O. Patent 2022150879 2022
  58. Guo W. Wang Y. Li A. Membrane stent applicable to interventional treatment of abdominal aortic diseases. EP. Patent 3733125 2020
  59. Kavteladze Z. Kavteladze D. Bifurcated stent graft system for the treatment of the abdominal aortic aneurysm and a method of treatment of the abdominal aortic aneurysm using the system. U.S. Patent 011419715 2022
  60. Majercak D.C. Park J.S. Twisted anchoring barb for sten tof abdominal aortic aneurysm (AAA) device. U.S. Patent 8372143 2013
  61. Roselli E.E. Frame structures, stent grafts incorporating the same, and methods for extended aortic repair. U.S. Patent 10299946 2019
  62. Yang F. Zheng W. Xiao J. Aortic stent-graft. U.S. Patent 20150018933 2015
  63. Spindler R. Skender D. Aortic stent graft with durable suture attachment sites. U.S. Patent 20210137670 2021
  64. Zhou S.S.N. How T.V. Vallabhaneni S.R. Gilling-Smith G.L. Brennan J.A. Harris P.L. McWilliams R. Comparison of the fixation strength of standard and fenestrated stent-grafts for endovascular abdominal aortic aneurysm repair. J. Endovasc. Ther. 2007 14 2 168 175 10.1177/152660280701400208 17484532
    [Google Scholar]
  65. Doberne J.W. Sabe A.A. Vekstein A.M. Wojnarski C.M. Anand J. Voight S. Raman V. Halpern S. Armstrong J.L. Zhu A. Weissler E.H. Jawitz O.K. Williams A.R. Hughes G.C. Stent graft-induced aortic wall injury: Incidence, risk factors, and outcomes. Ann. Thorac. Surg. 2022 114 3 684 692 10.1016/j.athoracsur.2022.01.028 35150615
    [Google Scholar]
  66. Jordan W.D. Jr de Vries J.P.P.M. Ouriel K. Mehta M. Varnagy D. Moore W.M. Jr Arko F.R. Joye J. Henretta J. Midterm outcome of EndoAnchors for the prevention of endoleak and stent-graft migration in patients with challenging proximal aortic neck anatomy. J. Endovasc. Ther. 2015 22 2 163 170 10.1177/1526602815574685 25809354
    [Google Scholar]
  67. Muhs B.E. Jordan W. Ouriel K. Rajaee S. de Vries J.P. Matched cohort comparison of endovascular abdominal aortic aneurysm repair with and without EndoAnchors. J. Vasc. Surg. 2018 67 6 1699 1707 10.1016/j.jvs.2017.10.059 29248241
    [Google Scholar]
  68. Giudice R. Borghese O. Sbenaglia G. Coscarella C. De Gregorio C. Leopardi M. Pogany G. The use of EndoAnchors in endovascular repair of abdominal aortic aneurysms with challenging proximal neck: Single-centre experience. JRSM Cardiovasc. Dis. 2019 8 2048004019845508 10.1177/2048004019845508 31041098
    [Google Scholar]
  69. Curley D. Sindhar J. Howard A. Zayed H. Saha P. Device profile of EndoAnchors for aortic stent graft implantation: Overview of their safety and efficacy. Expert Rev. Med. Devices 2023 20 8 615 620 10.1080/17434440.2023.2221787 37278218
    [Google Scholar]
  70. Bi J. Cui D. Liu Z. Wang J. Chen Y. Wang S. Guo J. Dai X. Stent graft-induced high wall stress promoted aortic wall failure and aortic wall injurious complications after TEVAR: A study of numerical simulation and bioinformatics analysis based on pig models. J Endovasc Ther 2024 10.1177/15266028241283324 39342458
    [Google Scholar]
  71. Qiao Y. Mao L. Wang Y. Luan J. Chen Y. Zhu T. Luo K. Fan J. Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair. Biomech. Model. Mechanobiol. 2022 21 2 419 431 10.1007/s10237‑021‑01542‑5 34994871
    [Google Scholar]
  72. Mortier P. Holzapfel G.A. De Beule M. Van Loo D. Taeymans Y. Segers P. Verdonck P. Verhegghe B. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: Comparison of three drug-eluting stents. Ann. Biomed. Eng. 2010 38 1 88 99 10.1007/s10439‑009‑9836‑5 19898936
    [Google Scholar]
  73. Vanaei S. Hashemi M. Solouk A. Asghari Ilani M. Amili O. Hefzy M.S. Tang Y. Elahinia M. Manufacturing, processing, and characterization of self-expanding metallic stents: A comprehensive review. Bioengineering 2024 11 10 983 10.3390/bioengineering11100983 39451359
    [Google Scholar]
  74. Joo H.C. Youn Y.N. Ko Y.G. Choi D. Won J.Y. Lee D.Y. Yoo K.J. Comparison of open surgical versus hybrid endovascular repair for descending thoracic aortic aneurysms with distal arch involvement. J. Thorac. Dis. 2018 10 6 3548 3557 10.21037/jtd.2018.05.127 30069352
    [Google Scholar]
  75. Liu Z. Wu L. Yang J. Cui F. Ho P. Wang L. Dong J. Chen G. Thoracic aorta stent grafts design in terms of biomechanical investigations into flexibility. Math Biosci Eng 2020 18 1 800 816 10.3934/mbe.2021042 33525119
    [Google Scholar]
  76. Shen X. Jiang J.B. Zhu H.F. Deng Y.Q. Ji S. Numerical investigation of the flexibility of a new self-expandable tapered stent. J. Mech. 2020 36 4 577 584 10.1017/jmech.2020.11
    [Google Scholar]
  77. García A. Peña E. Martínez M.A. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J. Mech. Behav. Biomed. Mater. 2012 10 166 175 10.1016/j.jmbbm.2012.02.006 22520428
    [Google Scholar]
  78. Lin J. Guidoin R. Du J. Wang L. Douglas G. Zhu D. Nutley M. Perron L. Zhang Z. Douville Y. An in vitro twist fatigue test of fabric stent-grafts supported by Z-stents vs. ringed stents. Materials 2016 9 2 113 10.3390/ma9020113 28787913
    [Google Scholar]
  79. Zhao Y. Yan S. Si Y. Song C. Effects of different geometric parameters on flexibility of Z-shaped stent-grafts. Yiyong Shengwu Lixue 2019 6 E007 E013 10.16156/j.1004‑7220.2019.01.002
    [Google Scholar]
  80. Scott J.C.R. Doman D.A. Johnston C.R. A parametric analysis of endovascular stent geometry manipulation on radial force performance. J. Med. Device. 2020 14 4 041004 10.1115/1.4048233
    [Google Scholar]
  81. Beyi A.F.M. Ismail A.E. Taib I. Ibrahim M.N. Stent classifications and effect of geometries on stent behaviour using finite element method. Int. J. Mech. Eng. Robot. Res. 2020 9 3 329 340 10.18178/ijmerr.9.3.329‑340
    [Google Scholar]
  82. Jayendiran R. Nour B. Ruimi A. Computational analysis of Nitinol stent-graft for endovascular aortic repair (EVAR) of abdominal aortic aneurysm (AAA): Crimping, sealing and fluid-structure interaction (FSI). Int. J. Cardiol. 2020 304 164 171 10.1016/j.ijcard.2019.11.091 31791620
    [Google Scholar]
  83. Kumar G.P. Cui F. Stent design parameters and crimpability. Int. J. Cardiol. 2016 223 552 553 10.1016/j.ijcard.2016.08.225 27557485
    [Google Scholar]
  84. Yan S. Song C. Si Y. Zhao Y. Design of non-equal-strut stent hoops for structural optimization of thoracic aortic stent-grafts. Minim. Invasive Ther. Allied Technol. 2022 31 1 58 71 10.1080/13645706.2020.1745849 32233714
    [Google Scholar]
  85. Vellaparambil R. Han W.S. Di Giovanni P. Avril S. Computational comparison of the mechanical behavior of aortic stent-grafts derived from auxetic unit cells. Cardiovasc. Eng. Technol. 2024 15 2 199 210 10.1007/s13239‑023‑00706‑x 38110763
    [Google Scholar]
  86. Ma T. Dong Z.H. Wang S. Meng Z.Y. Chen Y.Y. Fu W.G. Computational investigation of interaction between stent graft and aorta in retrograde type A dissection after thoracic endovascular aortic repair for type B aortic dissection. J. Vasc. Surg. 2018 68 6 14S 21S, 21S.e2 10.1016/j.jvs.2018.06.008 30064843
    [Google Scholar]
  87. Rovas G. Bikia V. Stergiopulos N. Design and computational optimization of compliance-matching aortic grafts. Front. Bioeng. Biotechnol. 2023 11 1179174 10.3389/fbioe.2023.1179174 37456727
    [Google Scholar]
  88. Weidman J.M. Desai M. Iftekhar A. Boyle K. Greengard J.S. Fisher L.M. Thomas R.L.S. Zannetti S. Engineering goals for future thoracic endografts-how can we make them more effective? Prog. Cardiovasc. Dis. 2013 56 1 92 102 10.1016/j.pcad.2013.05.001 23993242
    [Google Scholar]
  89. Liu Z. Chen G. Ong C. Yao Z. Li X. Deng J. Cui F. Multi-objective design optimization of stent-grafts for the aortic arch. Mater. Des. 2023 227 111748 10.1016/j.matdes.2023.111748
    [Google Scholar]
  90. Shen X. Ni Z. Multi-objective design optimization of coronary stent mechanical properties. Adv. Sci. Lett. 2011 4 3 835 838 10.1166/asl.2011.1307
    [Google Scholar]
  91. Tammareddi S. Sun G. Li Q. Multiobjective robust optimization of coronary stents. Mater. Des. 2016 90 682 692 10.1016/j.matdes.2015.10.153
    [Google Scholar]
  92. Li H. Wang X. Wei Y. Liu T. Gu J. Li Z. Wang M. Zhao D. Qiao A. Liu Y. Multi-objective optimizations of biodegradable polymer stent structure and stent microinjection molding process. Polymers 2017 9 1 20 10.3390/polym9010020 30970706
    [Google Scholar]
  93. Blair R.W. Dunne N.J. Lennon A.B. Menary G.H. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology. PLoS One 2019 14 8 e0218768 10.1371/journal.pone.0218768 31449528
    [Google Scholar]
  94. Vahabli E. Mann J. Heidari B.S. Lawrence-Brown M. Norman P. Jansen S. De-Juan-Pardo E. Doyle B. The technological advancement to engineer next‐generation stent‐grafts: design, material, and fabrication techniques. Adv. Healthc. Mater. 2022 11 13 2200271 10.1002/adhm.202200271 35481675
    [Google Scholar]
  95. Korei N. Solouk A. Haghbin Nazarpak M. Nouri A. A review on design characteristics and fabrication methods of metallic cardiovascular stents. Mater. Today Commun. 2022 31 103467 10.1016/j.mtcomm.2022.103467
    [Google Scholar]
  96. Garcia-Villen F. López-Zárraga F. Viseras C. Ruiz-Alonso S. Al-Hakim F. Diez-Aldama I. Saenz-del-Burgo L. Scaini D. Pedraz J.L. Three-dimensional printing as a cutting-edge, versatile and personalizable vascular stent manufacturing procedure: Toward tailor-made medical devices. Int. J. Bioprint. 2023 9 2 664 10.18063/ijb.v9i2.664 37065659
    [Google Scholar]
  97. Demanget N. Duprey A. Badel P. Orgéas L. Avril S. Geindreau C. Albertini J.N. Favre J.P. Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts. J. Endovasc. Ther. 2013 20 4 523 535 10.1583/12‑4063.1 23914862
    [Google Scholar]
  98. Putra N.K. Palar P.S. Anzai H. Shimoyama K. Ohta M. Comparative study between different strut’s cross section shape on minimizing low wall shear stress along stent vicinity via surrogate-based optimization. Advances in Structural and Multidisciplinary Optimization. Springer, Cham, 2018, pp. 2097-2109. 10.1007/978‑3‑319‑67988‑4_155
    [Google Scholar]
  99. Vellaparambil R. Han W.S. Di Giovanni P. Avril S. Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance. J. Mech. Behav. Biomed. Mater. 2023 138 105644 10.1016/j.jmbbm.2022.105644 36608533
    [Google Scholar]
  100. Gupta K. Meena K. A novel double arrowhead auxetic coronary stent. Comput. Biol. Med. 2023 166 107525 10.1016/j.compbiomed.2023.107525 37778216
    [Google Scholar]
  101. Zhou Y. Pan Y. Sun B. Gao Q. Mechanical properties of an improved flexible auxetic metamaterial and its application in self-expanding vascular stents. Eur. J. Mech. A, Solids 2024 106 105345 10.1016/j.euromechsol.2024.105345
    [Google Scholar]
/content/journals/biot/10.2174/0118722083355380250716073539
Loading
/content/journals/biot/10.2174/0118722083355380250716073539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test