Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been identified as catastrophic pollutants that can damage both the environment and human health. To restore a healthy surrounding, an environmental expert targeted the PAH contamination reduction strategy. Bioremediation techniques are overruling the conventional techniques due to their high disbursement and inefficient outcomes. Several PAHs, including Pyrene (PYR), Chrysene (CHY), Benz[a]anthracene (BaA), Benzo[a]pyrene (BaP), Fluoranthene (FLU) Indenol [1,2,3-cd] pyrene (INP), Benzo[ghi]perylene (BghiP), and, Dibenz [a, h] anthracene (DBA) have been identified by the International Agency for Research on Cancer (IARC) as carcinogenic, mutagenic, and teratogenic. Since PAHs are less hydrophilic and have more lipophilic properties, they are readily absorbed from the GIT of mammals. Grilled beef and chicken meat that had been charcoal-grilled contained Anthracene (ANT), BaP, Benzo[k]fluoranthene (BkF), Phenanthrene (PHE), and PYR. The highest dietary daily intake of BkF was reported to be 1.09 µg/ day in the intestine of grilled beef and 23.22 µg/day in the stomach of grilled chicken. A number of bacterial species have been identified in the biodegradation of PAHs, including (, and , and Fungi, including and used PAHs as the source of carbon and energy for survival. To a certain extent, algae such as and () also depend on PAHs to survive. There are plenty of patents that have been sanctioned, including the process for producing PAHs through recycling of low molecular weight alkanes, the removal process of PAHs from the terrestrial habitats, the identification of PAHs fingerprints, the utilization of microbes obtained from different resources to degrade the PAHs into minimum catastrophic products, and so on. This review aims to highlight the calamitous effect of high molecular weight PAHs on the surrounding, and humankind, as well as the advancement in bioremediation approaches in recent years. The authors also addressed the newly isolated microbiomes, including bacteria, fungi, algae, and others, as promising candidates for using PAHs as a source of carbon and energy.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083343885250326070617
2025-04-16
2025-12-06
Loading full text...

Full text loading...

References

  1. KariyawasamT. DoranG.S. HowittJ.A. PrenzlerP.D. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation.Chemosphere2022291Pt 313298110.1016/j.chemosphere.2021.132981 34826448
    [Google Scholar]
  2. PatelA.B. ShaikhS. JainK.R. DesaiC. MadamwarD. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches.Front. Microbiol.20201156281310.3389/fmicb.2020.562813 33224110
    [Google Scholar]
  3. YounG. Goodyear Tire and Rubber Co,. Polymer terminated with polyaromatic hydrocarbon.United States patent application US 17/933,8682024
  4. AdenijiA.O. OkohO.O. OkohA.I. Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa, and their health risk assessment.Arch. Environ. Contam. Toxicol.201976465766910.1007/s00244‑019‑00617‑w 30879120
    [Google Scholar]
  5. SamantaS.K. SinghO.V. JainR.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation.Trends Biotechnol.200220624324810.1016/S0167‑7799(02)01943‑1 12007492
    [Google Scholar]
  6. AlegbeleyeO.O. OpeoluB.O. JacksonV. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (Acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa.Braz. J. Microbiol.201748231432510.1016/j.bjm.2016.07.027 27956015
    [Google Scholar]
  7. GuptaS. PathakB. FulekarM.H. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: A review.Rev. Environ. Sci. Biotechnol.201514224126910.1007/s11157‑014‑9353‑3
    [Google Scholar]
  8. BamforthS.M. SingletonI. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions.J. Chem. Technol. Biotechnol.200580772373610.1002/jctb.1276
    [Google Scholar]
  9. VarjaniS.J. JoshiR.R. KumarS.P. Polycyclic aromatic hydrocarbons from petroleum oil industry activities: Effect on human health and their biodegradation.Waste Bioremediation Energy, Environment, and Sustainability. VarjaniS. GnansounouE. GurunathanB. SingaporeSpringer201810.1007/978‑981‑10‑7413‑4_9
    [Google Scholar]
  10. AdkinsE.M. GiaccaiJ.A. MillerJ.H. Computed electronic structure of polynuclear aromatic hydrocarbon agglomerates.Proc. Combust. Inst.201736195796410.1016/j.proci.2016.06.186
    [Google Scholar]
  11. StogiannidisE. LaaneR. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities.Rev. Environ. Contam. Toxicol.201523449133 25385513
    [Google Scholar]
  12. McGrathT.E. ChanW.G. HajaligolM.R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose.J. Anal. Appl. Pyrolysis2003661-2517010.1016/S0165‑2370(02)00105‑5
    [Google Scholar]
  13. González-PérezJ.A. AlmendrosG. RosaL.D.J.M. González-VilaF.J. Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py–GC/MS).J. Anal. Appl. Pyroly.20141091810.1016/j.jaap.2014.07.005
    [Google Scholar]
  14. AlmeidaD.M. NascimentoD.D.V. MafaldaO.D.P.Jr PatireV.F. Albergaria-BarbosaD.A.C.R. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of a Tropical Bay influenced by anthropogenic activities (Todos os Santos Bay, BA, Brazil).Mar. Pollut. Bull.201813739940710.1016/j.marpolbul.2018.10.040 30503449
    [Google Scholar]
  15. DatN.D. ChangM.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies.Sci. Total Environ.201760968269310.1016/j.scitotenv.2017.07.204 28763665
    [Google Scholar]
  16. Abdel-ShafyH.I. MansourM.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation.Egypt J Petrol201625110712310.1016/j.ejpe.2015.03.011
    [Google Scholar]
  17. EldosH.I. ZouariN. SaeedS. Al-GhoutiM.A. Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies.Arab. J. Chem.202215710391810.1016/j.arabjc.2022.103918
    [Google Scholar]
  18. TobiszewskiM. Application of diagnostic ratios of PAHs to characterize the pollution emission sources.Int Proc Chem Biol Environ2014694144
    [Google Scholar]
  19. GanS. LauE.V. NgH.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs).J. Hazard. Mater.20091722-353254910.1016/j.jhazmat.2009.07.118 19700241
    [Google Scholar]
  20. SahooB.M. KumarR.B.V.V. BanikB.K. BorahP. Polyaromatic hydrocarbons (PAHs): Structures, synthesis, and their biological profile.Curr. Org. Synth.202017862564010.2174/1570179417666200713182441 32660405
    [Google Scholar]
  21. ZhangZ. RengelZ. MeneyK. PantelicL. TomanovicR. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species.J. Hazard. Mater.20111891-211912610.1016/j.jhazmat.2011.02.007 21367520
    [Google Scholar]
  22. ChanW. JinL. SunZ. GriffithS.M. YuJ.Z. Fabric masks as a personal dosimeter for quantifying exposure to airborne polycyclic aromatic hydrocarbons.Environ. Sci. Technol.20215585128513510.1021/acs.est.0c08327 33710865
    [Google Scholar]
  23. AchtenC. AnderssonJ.T. Overview of polycyclic aromatic compounds (PAC).Polycycl. Aromat. Compd.2015352-417718610.1080/10406638.2014.994071 26823644
    [Google Scholar]
  24. LeeM. Analytical chemistry of polycyclic aromatic compounds.Amsterdam, NetherlandsElsevier2012
    [Google Scholar]
  25. HuY.J. BaoL.J. HuangC.L. LiS.M. LiuP. ZengE.Y. Assessment of airborne polycyclic aromatic hydrocarbons in a megacity of South China: Spatiotemporal variability, indoor-outdoor interplay and potential human health risk.Environ. Pollut.201823843143910.1016/j.envpol.2018.03.040 29587214
    [Google Scholar]
  26. PearlmanR.S. YalkowskyS.H. BanerjeeS. Water solubilities of polynuclear aromatic and heteroaromatic compounds.J. Phys. Chem. Ref. Data198413255556210.1063/1.555712
    [Google Scholar]
  27. PandeyS.K. KimK.H. BrownR.J.C. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air.Trends Analyt. Chem.201130111716173910.1016/j.trac.2011.06.017
    [Google Scholar]
  28. LiuL. LiB. WuY. Simultaneous determination of saturated and aromatic hydrocarbons in soil by on-line high performance liquid chromatography-gas chromatography.Se Pu202139890591210.3724/SP.J.1123.2021.02011 34212591
    [Google Scholar]
  29. KimK.H. JahanS.A. KabirE. BrownR.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects.Environ. Int.201360718010.1016/j.envint.2013.07.019 24013021
    [Google Scholar]
  30. ZhangX. YangL. ZhangH. Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: A review.Int. J. Environ. Res. Public Health2021186312410.3390/ijerph18063124 33803562
    [Google Scholar]
  31. BukowskaB. MokraK. MichałowiczJ. Benzo [a] pyrene—Environmental occurrence, human exposure, and mechanisms of toxicity.Int. J. Mol. Sci.20222311634810.3390/ijms23116348 35683027
    [Google Scholar]
  32. JaliliV. BarkhordariA. GhiasvandA. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review.Microchem. J.202015710496710.1016/j.microc.2020.104967
    [Google Scholar]
  33. HouL. LeeH.K. Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons.J. Chromatogr. A20029761-237738510.1016/S0021‑9673(02)01152‑4 12462631
    [Google Scholar]
  34. LiuH. MaS. ZhangX. YuY. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review.Enviro. Pollut.201925411301810.1016/j.envpol.2019.113018
    [Google Scholar]
  35. AbuhelouF. Mansuy-HuaultL. LorgeouxC. Suspended particulate matter collection methods influence the quantification of polycyclic aromatic compounds in the river system.Environ. Sci. Pollut. Res. Int.20172428227172272910.1007/s11356‑017‑9840‑5 28815369
    [Google Scholar]
  36. LiuC. ShiH. WangC. FeiY. HanZ. Thermal remediation of soil contaminated with polycyclic aromatic hydrocarbons: Pollutant removal process and influence on soil functionality.Toxics202210847410.3390/toxics10080474 36006154
    [Google Scholar]
  37. ZubairA. PappoeM. JamesL.A. HawboldtK. Development, optimization, validation and application of faster gas chromatography – flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.J. Chromatogr. A2015142524024810.1016/j.chroma.2015.10.003 26607315
    [Google Scholar]
  38. QiaoM. QiW. LiuH. QuJ. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources.Environ. Int.202216310723210.1016/j.envint.2022.107232 35427839
    [Google Scholar]
  39. WangC. ZhouS. WuS. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.Water Sci. Technol.20177682150215710.2166/wst.2017.387 29068344
    [Google Scholar]
  40. VijayanandM. RamakrishnanA. SubramanianR. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate.Environ. Res.202322711571610.1016/j.envres.2023.115716 36940816
    [Google Scholar]
  41. JesusF. PereiraJ.L. CamposI. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna.Sci. Total Environ.202282015328210.1016/j.scitotenv.2022.153282 35066033
    [Google Scholar]
  42. SunR. SunY. LiQ.X. ZhengX. LuoX. MaiB. Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment.Sci. Total Environ.2018640-64126427210.1016/j.scitotenv.2018.05.320 29859442
    [Google Scholar]
  43. OthmanB.H. PickF.R. HlailiS.A. LeboulangerC. Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae – A review.J. Hazard. Mater.202344112986910.1016/j.jhazmat.2022.129869 36063709
    [Google Scholar]
  44. ZhangY. ChenX. ZhangY. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to in vivo metabolic transformation.Compr. Rev. Food Sci. Food Saf.20212021422145610.1111/1541‑4337.12705 33506545
    [Google Scholar]
  45. KoszuckaA. NowakA. Thermal processing food-related toxicants: A review.Crit. Rev. Food Sci. Nutr.201959223579359610.1080/10408398.2018.1500440 30311772
    [Google Scholar]
  46. MaulvaultA.L. MachadoR. AfonsoC. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab.Food Chem. Toxicol.201149112808281510.1016/j.fct.2011.07.059 21856365
    [Google Scholar]
  47. HamidiE.N. HajebP. SelamatJ. LeeS.Y. RazisA.A.F. Bioaccessibility of polycyclic aromatic hydrocarbons (PAHS) in grilled meat: The effects of meat doneness and fat content.Int. J. Environ. Res. Public Health202219273610.3390/ijerph19020736 35055557
    [Google Scholar]
  48. KafourisD. KoukkidouA. ChristouE. HadjigeorgiouM. YiannopoulosS. Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus.Meat Sci.202016410808810.1016/j.meatsci.2020.108088 32092623
    [Google Scholar]
  49. MasudaM. WangQ. TokumuraM. MiyakeY. AmagaiT. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods.Ecotoxicol. Environ. Saf.201917818819410.1016/j.ecoenv.2019.04.046 31009924
    [Google Scholar]
  50. LiuS. MengF. DingZ. ChiJ. Phytoremediation of PAH-contaminated sediments with different organic matter contents by Potamogeton crispus L.Int. J. Phytoremed.201820131317132310.1080/15226514.2018.1488811 30666897
    [Google Scholar]
  51. AliM. SongX. WangQ. Thermally enhanced biodegradation of benzo[a]pyrene and benzene co-contaminated soil: Bioavailability and generation of ROS.J. Hazard. Mater.202345513149410.1016/j.jhazmat.2023.131494 37172381
    [Google Scholar]
  52. GargR. PiplaniM. SinghY. BhatejaP. RanaR. An overview of integrated risk factors with prevention and prevalence of asthma at the global level.Curr. Tradit. Med.2024104e25052321735810.2174/2215083810666230525153908
    [Google Scholar]
  53. GargR. PiplaniM. UpadhayayA. SinghY. A review on comparison of allopathic medicines to other drug therapies in the management of asthma.Infect. Disord. Drug Targets2023241124
    [Google Scholar]
  54. MaL. DengF. YangC. GuoC. DangZ. Bioremediation of PAH-contaminated farmland: Field experiment.Environ. Sci. Pollut. Res. Int.2018251647210.1007/s11356‑016‑7906‑4 27838911
    [Google Scholar]
  55. BandoweB.A.M. LeimerS. MeuselH. Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils.Soil Biol. Biochem.2019129607010.1016/j.soilbio.2018.10.017
    [Google Scholar]
  56. Antizar-LadislaoB. Lopez-RealJ. BeckA.J. Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches.J. Hazard. Mater.200613731583158810.1016/j.jhazmat.2006.04.056 16797836
    [Google Scholar]
  57. ColomboM. CavalcaL. BernasconiS. AndreoniV. Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: A feasibility study in solid- and slurry-phase microcosms.Int. Biodeterior. Biodegradation201165119119710.1016/j.ibiod.2010.11.002
    [Google Scholar]
  58. Dean-RossD. MoodyJ.D. FreemanJ.P. DoergeD.R. CernigliaC.E. Metabolism of anthracene by a Rhodococcus species.FEMS Microbiol. Lett.2001204120521110.1111/j.1574‑6968.2001.tb10886.x 11682202
    [Google Scholar]
  59. Dean-RossD. MoodyJ. CernigliaC.E. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment.FEMS Microbiol. Ecol.20024111710.1111/j.1574‑6941.2002.tb00960.x 19709233
    [Google Scholar]
  60. HaritashA.K. KaushikC.P. Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil.Int. J. Environ. Sci.201665808819
    [Google Scholar]
  61. JonerE.J. JohansenA. LoibnerA.P. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil.Environ. Sci. Technol.200135132773277710.1021/es000288s 11452608
    [Google Scholar]
  62. CaoD. HuoY. ZhangL. ZhangY. ZhangZ. HuoM. Aerobic biodegradation of phenanthrene by a newly isolated Klebsiella sp. DS-1 from wastewater.J. Water Process Eng.20235310382010.1016/j.jwpe.2023.103820
    [Google Scholar]
  63. LiX. PengD. ZhangY. JuD. GuanC. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants.Ecotoxicol. Environ. Saf.202020111080410.1016/j.ecoenv.2020.110804 32502907
    [Google Scholar]
  64. QinS. LiuX. LvW. HuJ. HuangX. ZhaoL. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides.Biochem. Eng. J.202319110880310.1016/j.bej.2022.108803
    [Google Scholar]
  65. SunZ. WangL. YangS. XunY. ZhangT. WeiW. Thermally enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil.J. Environ. Chem. Eng.202210210723610.1016/j.jece.2022.107236
    [Google Scholar]
  66. YuJ. ZhuS. PangL. ChenP. ZhuG.T. Porphyrin-based magnetic nanocomposites for efficient extraction of polycyclic aromatic hydrocarbons from water samples.J. Chromatogr. A2018154011010.1016/j.chroma.2018.02.006 29433823
    [Google Scholar]
  67. GengS XuG YouY Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils.Environ Res2022212Pt A11319110.1016/j.envres.2022.11319135351456
    [Google Scholar]
  68. ZhouZ.Y. YangL. WangM.X. ZhouZ.F. Biochar amendment promoted the maize growth and changed bacterial community assembly in a phenanthrene-contaminated soil.J. Soil Sci. Plant Nutr.20232333010302210.1007/s42729‑023‑01252‑0
    [Google Scholar]
  69. ShiZ. WenM. ZhangJ. TangZ. WangC. Effect of phenanthrene on the biological characteristics of earthworm casts and their relationships with digestive and anti-oxidative systems.Ecotoxicol. Environ. Saf.202019311035910.1016/j.ecoenv.2020.110359 32097786
    [Google Scholar]
  70. ZhangZ. SunJ. GongX. WangC. WangH. Anaerobic biodegradation of pyrene and benzo[a]pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA.J. Hazard. Mater.202345913205310.1016/j.jhazmat.2023.132053 37482040
    [Google Scholar]
  71. QianZ. PengT. HuangT. HuZ. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment.J. Environ. Manage.202232111592210.1016/j.jenvman.2022.115922 36027730
    [Google Scholar]
  72. MazarjiM. MinkinaT. SushkovaS. Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil.Environ. Geochem. Health202244119520610.1007/s10653‑020‑00801‑1 33411119
    [Google Scholar]
  73. NzilaA. MusaM.M. Current status of and future perspectives in bacterial degradation of benzo [a] pyrene.Int. J. Environ. Res. Public Health202018126210.3390/ijerph18010262 33396411
    [Google Scholar]
  74. IsmailN.A. KasmuriN. HamzahN. JaafarJ. MojiriA. KindaichiT. Influence of pH and concentration on the growth of bacteria - fungus and benzo[a]pyrene degradation.Environ. Technol. Innov.20232910299510.1016/j.eti.2022.102995
    [Google Scholar]
  75. NzilaA. MusaM.M. AfuechetaE. Benzo[A]pyrene biodegradation by multiple and individual mesophilic bacteria under axenic conditions and in soil samples.Int. J. Environ. Res. Public Health2023203185510.3390/ijerph20031855 36767220
    [Google Scholar]
  76. GoveasL.C. SelvarajR. VinayagamR. SajankilaS.P. PugazhendhiA. Biodegradation of benzo(a)pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway.Chemosphere202332113806610.1016/j.chemosphere.2023.138066 36781003
    [Google Scholar]
  77. ElyamineA.M. KanJ. MengS. TaoP. WangH. HuZ. Aerobic and anaerobic bacterial and fungal degradation of pyrene: Mechanism pathway including biochemical reaction and catabolic genes.Int. J. Mol. Sci.20212215820210.3390/ijms22158202 34360967
    [Google Scholar]
  78. KumariS. GautamK. SethM. AnbumaniS. ManickamN. Bioremediation of polycyclic aromatic hydrocarbons in crude oil by bacterial consortium in soil amended with Eisenia fetida and rhamnolipid.Environ. Sci. Pollut. Res. Int.20233034825178253110.1007/s11356‑023‑28082‑y 37326724
    [Google Scholar]
  79. García de LlaseraM.P. PérezF.A.C. MarínP.G. CalvaB.E.G. First evidence of extracellular enzymatic degradation of benzo(a)pyrene by the phytoplankton species Selenastrum capricornutum and the influence of temperature.Environ20228100246
    [Google Scholar]
  80. JinJ. ShiY. ZhangB. WanD. ZhangQ. LiY. Biotransformation of benzo[a]pyrene by Pannonibacter sp. JPA3 and the degradation mechanism through the initially oxidized benzo[a]pyrene-4,5-dihydrodiol to downstream metabolites.RSC Advances20231327188781888710.1039/D3RA01453C 37350855
    [Google Scholar]
  81. SureshR. Subashchandrabose, kadiyala venkateswarlu, ravi naidu, mallavarapu megharaj, biodegradation of high-molecular weight PAHs by Rhodococcuswratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP.Sci. Total Environ.2019651Part 1813821
    [Google Scholar]
  82. ZouX. SuQ. YiQ. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening.J. Hazard. Mater.202345613166610.1016/j.jhazmat.2023.131666 37236106
    [Google Scholar]
  83. DingZ. YiY. WangW. ZhangQ. Atmospheric degradation of chrysene initiated by OH radical: A quantum chemical investigation.Chemosphere202126312826710.1016/j.chemosphere.2020.128267 33297211
    [Google Scholar]
  84. ThomasS. VeettilN.T. SubbiahK. Isolation, characterization and optimization of chrysene degradation using bacteria isolated from oil-contaminated water.Water Sci. Technol.20218410-112737274810.2166/wst.2021.227 34850690
    [Google Scholar]
  85. BastollaC.L.V. LimaD. MattosJ.J. Comparative biochemical and molecular responses of biotransformation and antioxidant systems in three species of Crassostrea (Sacco, 1897) oysters exposed to chrysene.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202327010964210.1016/j.cbpc.2023.109642 37169212
    [Google Scholar]
  86. LuoJ. WuL. ChenY. FengL. CaoJ. Integrated approach to enhance the anaerobic biodegradation of benz[α]anthracene: A high-molecule-weight polycyclic aromatic hydrocarbon in sludge by simultaneously improving the bioavailability and microbial activity.J. Hazard. Mater.201936532233010.1016/j.jhazmat.2018.11.012 30447640
    [Google Scholar]
  87. LuoJ. DengJ. CuiL. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in the biodegradation of benz(a)anthracene and the related mechanism analysis.Chemosphere202024912609710.1016/j.chemosphere.2020.126097 32078851
    [Google Scholar]
  88. GuntupalliS. ThunuguntlaV.B.S.C. ChalasaniL.M. RaoC.V. BondiliJ.S. Degradation and metabolite profiling of benz (a) anthracene, dibenz (a, h) anthracene and indeno [1, 2, 3-cd] pyrene by Aspergillus terricola.Polycycl. Aromat. Compd.2019391849210.1080/10406638.2016.1262878
    [Google Scholar]
  89. DaiY. LiuR. ChenJ. LiN. Bioremediation of HMW-PAHs-contaminated soils by rhizosphere microbial community of Fire phoenix plants.Chem. Eng. J.202243213424610.1016/j.cej.2021.134246
    [Google Scholar]
  90. WangL. YanZ. YanH. HaoZ. HuangJ. JiangH. Magnetic loofah sponge biochar facilitates microbial interspecies cooperation in surface and subsurface sediments for enhanced PAH biodegradation.Environ. Pollut.202333412218510.1016/j.envpol.2023.122185
    [Google Scholar]
  91. DharK. AbinandanS. SanaT. VenkateswarluK. MegharajM. Anaerobic biodegradation of phenanthrene and pyrene by sulfate-reducing cultures enriched from contaminated freshwater lake sediments.Environmental Researc.202323511661610.1016/j.envres.2023.116616
    [Google Scholar]
  92. AlagićS.Č. MaluckovB.S. RadojičićV.B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review.Clean Technol. Environ. Policy201517359761410.1007/s10098‑014‑0840‑6
    [Google Scholar]
  93. KhalidF.N.M. KlarupD. The influence of sunlight and oxidative treatment on measured PAH concentrations in biochar.Environ. Sci. Pollut. Res. Int.20152217129751298110.1007/s11356‑015‑4469‑8 25916471
    [Google Scholar]
  94. EkerG. ŞengülB. CindorukS.S. Performance evaluation of diethylamine to the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted soils with sunlight.Polycycl. Aromat. Compd.202141230631810.1080/10406638.2019.1578809
    [Google Scholar]
  95. ZhuX. NiX. WaigiM. LiuJ. SunK. GaoY. Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria.Int. J. Environ. Res. Public Health201613880510.3390/ijerph13080805 27517944
    [Google Scholar]
  96. LiangC. YeQ. HuangY. WangY. ZhangZ. WangH. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation.J. Hazard. Mater.202243712930510.1016/j.jhazmat.2022.129305 35709619
    [Google Scholar]
  97. LiS. GaoX. ZhuS. LiangH. Polycyclic aromatic hydrocarbons (PAHs) in coal preparation plant products: A contributor to environmental pollution.Sci. Total Environ.202490616788710.1016/j.scitotenv.2023.167887 37852503
    [Google Scholar]
  98. ZhaoZ. HeW. WuR. XuF. Distribution and relationships of polycyclic aromatic hydrocarbons (PAHS) in soils and plants near major lakes in eastern china.Toxics2022101057710.3390/toxics10100577 36287857
    [Google Scholar]
  99. Zain ul ArifeenM. MaY. WuT. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coalassociated sediments at 2.5 km below the seafloor.Chemosphere2022303Pt 213506210.1016/j.chemosphere.2022.13506235618067
    [Google Scholar]
  100. HadibarataT. KristantiR.A. BilalM. Al-MohaimeedA.M. ChenT.W. LamM.K. Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032.Chemosphere2022307Pt 313601410.1016/j.chemosphere.2022.136014 35970216
    [Google Scholar]
  101. Dell’ AnnoF. RastelliE. SansoneC. BrunetC. IanoraA. Dell’ AnnoA. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era.Microorganisms202198169510.3390/microorganisms9081695 34442774
    [Google Scholar]
  102. TomarR.S. Rai-KalalP. JajooA. Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris.Algal Res.20226710281510.1016/j.algal.2022.102815
    [Google Scholar]
  103. WangM. ZhangW. HeT. RongL. YangQ. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: Green and sustainable technology.Arch. Microbiol.202420611010.1007/s00203‑023‑03734‑2 38059992
    [Google Scholar]
  104. SatpatiG.G. GuptaS. BiswasR.K. ChoudhuryA.K. KimJ.W. DavoodbashaM. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations.Chemosphere202334414033710.1016/j.chemosphere.2023.140337 37797901
    [Google Scholar]
  105. HeysK.A. ShoreR.F. PereiraM.G. JonesK.C. MartinF.L. Risk assessment of environmental mixture effects.RSC Advances2016653478444785710.1039/C6RA05406D
    [Google Scholar]
  106. CarpenterD.O. ArcaroK. SpinkD.C. Understanding the human health effects of chemical mixtures.Environ. Health Perspect.2002110Suppl. 1254210.1289/ehp.02110s125 11834461
    [Google Scholar]
/content/journals/biot/10.2174/0118722083343885250326070617
Loading
/content/journals/biot/10.2174/0118722083343885250326070617
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bioremediation; catastrophic pollutants; chrysene; environment; microbiomes; pyrene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test