Skip to content
2000
image of A Review on Adaption of Microbiomes to Polynuclear Aromatic Hydrocarbons: An Alternate Approach to Environment 
Sustainability

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been identified as catastrophic pollutants that can damage both the environment and human health. To restore a healthy surrounding, an environmental expert targeted the PAH contamination reduction strategy. Bioremediation techniques are overruling the conventional techniques due to their high disbursement and inefficient outcomes. Several PAHs, including Pyrene (PYR), Chrysene (CHY), Benz[a]anthracene (BaA), Benzo[a]pyrene (BaP), Fluoranthene (FLU) Indenol [1,2,3-cd] pyrene (INP), Benzo[ghi]perylene (BghiP), and, Dibenz [a, h] anthracene (DBA) have been identified by the International Agency for Research on Cancer (IARC) as carcinogenic, mutagenic, and teratogenic. Since PAHs are less hydrophilic and have more lipophilic properties, they are readily absorbed from the GIT of mammals. Grilled beef and chicken meat that had been charcoal-grilled contained Anthracene (ANT), BaP, Benzo[k]fluoranthene (BkF), Phenanthrene (PHE), and PYR. The highest dietary daily intake of BkF was reported to be 1.09 µg/ day in the intestine of grilled beef and 23.22µg/day in the stomach of grilled chicken. A number of bacterial species have been identified in the biodegradation of PAHs, including (, , and Fungi, including and used PAHs as the source of carbon and energy for survival. To a certain extent, algae such as () also depend on PAHs to survive. This review aims to highlight the calamitous effect of high molecular weight PAHs on the surrounding, and humankind, as well as the advancement in bioremediation approaches in recent years. The authors also addressed the newly isolated microbiomes, including bacteria, fungi, algae, and others, as promising candidates for using PAHs as a source of carbon and energy.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083343885250326070617
2025-04-16
2025-09-27
Loading full text...

Full text loading...

References

  1. Kariyawasam T. Doran G.S. Howitt J.A. Prenzler P.D. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. Chemosphere 2022 291 Pt 3 132981 10.1016/j.chemosphere.2021.132981 34826448
    [Google Scholar]
  2. Patel A.B. Shaikh S. Jain K.R. Desai C. Madamwar D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020 11 562813 10.3389/fmicb.2020.562813 33224110
    [Google Scholar]
  3. Ojha H. Rahman A.J. 2023
  4. Adeniji A.O. Okoh O.O. Okoh A.I. Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa, and their health risk assessment. Arch. Environ. Contam. Toxicol. 2019 76 4 657 669 10.1007/s00244‑019‑00617‑w 30879120
    [Google Scholar]
  5. Samanta S.K. Singh O.V. Jain R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002 20 6 243 248 10.1016/S0167‑7799(02)01943‑1 12007492
    [Google Scholar]
  6. Alegbeleye O.O. Opeolu B.O. Jackson V. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz. J. Microbiol. 2017 48 2 314 325 10.1016/j.bjm.2016.07.027 27956015
    [Google Scholar]
  7. Gupta S. Pathak B. Fulekar M.H. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: A review. Rev. Environ. Sci. Biotechnol. 2015 14 2 241 269 10.1007/s11157‑014‑9353‑3
    [Google Scholar]
  8. Bamforth S.M. Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J. Chem. Technol. Biotechnol. 2005 80 7 723 736 10.1002/jctb.1276
    [Google Scholar]
  9. Varjani SJ Joshi RR Kumar S.P Srivastava VK Kumar V Banerjee C Kumar P.R Polycyclic aromatic hydrocarbons from petroleum oil industry activities: Effect on human health and their biodegradation. Waste Bioremediation. Energy, Environment, and Sustainability. Varjani S. Gnansounou E. Gurunathan B. Singapore Springer 2018 10.1007/978‑981‑10‑7413‑4_9
    [Google Scholar]
  10. Adkins E.M. Giaccai J.A. Miller J.H. Computed electronic structure of polynuclear aromatic hydrocarbon agglomerates. Proc. Combust. Inst. 2017 36 1 957 964 10.1016/j.proci.2016.06.186
    [Google Scholar]
  11. Stogiannidis E. Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Rev. Environ. Contam. Toxicol. 2015 234 49 133 25385513
    [Google Scholar]
  12. McGrath T.E. Chan W.G. Hajaligol M.R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 2003 66 1-2 51 70 10.1016/S0165‑2370(02)00105‑5
    [Google Scholar]
  13. González-Pérez J.A. Almendros G. Rosa L.D.J.M. González-Vila F.J. Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py–GC/MS). J. Anal. Appl. Pyroly. 2014 109 1 8 10.1016/j.jaap.2014.07.005
    [Google Scholar]
  14. Almeida D.M. Nascimento D.D.V. Mafalda O.D.P. Jr Patire V.F. Albergaria-Barbosa D.A.C.R. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of a Tropical Bay influenced by anthropogenic activities (Todos os Santos Bay, BA, Brazil). Mar. Pollut. Bull. 2018 137 399 407 10.1016/j.marpolbul.2018.10.040 30503449
    [Google Scholar]
  15. Dat N.D. Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017 609 682 693 10.1016/j.scitotenv.2017.07.204 28763665
    [Google Scholar]
  16. Abdel-Shafy H.I. Mansour M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol. 2016 25 1 107 123 10.1016/j.ejpe.2015.03.011
    [Google Scholar]
  17. Eldos H.I. Zouari N. Saeed S. Al-Ghouti M.A. Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arab. J. Chem. 2022 15 7 103918 10.1016/j.arabjc.2022.103918
    [Google Scholar]
  18. Tobiszewski M. Application of diagnostic ratios of PAHs to characterize the pollution emission sources. Int. Proc. Chem. Biol. Environ. 2014 69 41 44
    [Google Scholar]
  19. Gan S. Lau E.V. Ng H.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009 172 2-3 532 549 10.1016/j.jhazmat.2009.07.118 19700241
    [Google Scholar]
  20. Sahoo B.M. Kumar R.B.V.V. Banik B.K. Borah P. Polyaromatic hydrocarbons (PAHs): Structures, synthesis, and their biological profile. Curr. Org. Synth. 2020 17 8 625 640 10.2174/1570179417666200713182441 32660405
    [Google Scholar]
  21. Zhang Z. Rengel Z. Meney K. Pantelic L. Tomanovic R. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J. Hazard. Mater. 2011 189 1-2 119 126 10.1016/j.jhazmat.2011.02.007 21367520
    [Google Scholar]
  22. Chan W. Jin L. Sun Z. Griffith S.M. Yu J.Z. Fabric masks as a personal dosimeter for quantifying exposure to airborne polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2021 55 8 5128 5135 10.1021/acs.est.0c08327 33710865
    [Google Scholar]
  23. Achten C. Andersson J.T. Overview of polycyclic aromatic compounds (PAC). Polycycl. Aromat. Compd. 2015 35 2-4 177 186 10.1080/10406638.2014.994071 26823644
    [Google Scholar]
  24. Lee M. Analytical chemistry of polycyclic aromatic compounds. Amsterdam, Netherlands Elsevier 2012
    [Google Scholar]
  25. Hu Y.J. Bao L.J. Huang C.L. Li S.M. Liu P. Zeng E.Y. Assessment of airborne polycyclic aromatic hydrocarbons in a megacity of South China: Spatiotemporal variability, indoor-outdoor interplay and potential human health risk. Environ. Pollut. 2018 238 431 439 10.1016/j.envpol.2018.03.040 29587214
    [Google Scholar]
  26. Pearlman R.S. Yalkowsky S.H. Banerjee S. Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 1984 13 2 555 562 10.1063/1.555712
    [Google Scholar]
  27. Pandey S.K. Kim K.H. Brown R.J.C. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. Trends Analyt. Chem. 2011 30 11 1716 1739 10.1016/j.trac.2011.06.017
    [Google Scholar]
  28. Liu L. Li B. Wu Y. Simultaneous determination of saturated and aromatic hydrocarbons in soil by on-line high performance liquid chromatography-gas chromatography. Se Pu 2021 39 8 905 912 10.3724/SP.J.1123.2021.02011 34212591
    [Google Scholar]
  29. Kim K.H. Jahan S.A. Kabir E. Brown R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013 60 71 80 10.1016/j.envint.2013.07.019 24013021
    [Google Scholar]
  30. Zhang X. Yang L. Zhang H. Xing W. Wang Y. Bai P. Zhang L. Hayakawa K. Toriba A. Wei Y. Tang N. Assessing approaches of human inhalation exposure to polycyclic aromatic hydrocarbons: A review. Int. J. Environ. Res. Public Health 2021 18 6 3124 10.3390/ijerph18063124 33803562
    [Google Scholar]
  31. Bukowska B. Mokra K. Michałowicz J. Benzo [a] pyrene—environmental occurrence, human exposure, and mechanisms of toxicity. Int. J. Mol. Sci. 2022 23 11 6348 10.3390/ijms23116348 35683027
    [Google Scholar]
  32. Jalili V. Barkhordari A. Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem. J. 2020 157 104967 10.1016/j.microc.2020.104967
    [Google Scholar]
  33. Hou L. Lee H.K. Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons. J. Chromatogr. A 2002 976 1-2 377 385 10.1016/S0021‑9673(02)01152‑4 12462631
    [Google Scholar]
  34. Liu H Ma S Zhang X Yu Y. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review. Enviro. Pollut. 2019 254 113018 10.1016/j.envpol.2019.113018
    [Google Scholar]
  35. Abuhelou F. Mansuy-Huault L. Lorgeoux C. Catteloin D. Collin V. Bauer A. Kanbar H.J. Gley R. Manceau L. Thomas F. Montargès-Pelletier E. Suspended particulate matter collection methods influence the quantification of polycyclic aromatic compounds in the river system. Environ. Sci. Pollut. Res. Int. 2017 24 28 22717 22729 10.1007/s11356‑017‑9840‑5 28815369
    [Google Scholar]
  36. Liu C. Shi H. Wang C. Fei Y. Han Z. Thermal remediation of soil contaminated with polycyclic aromatic hydrocarbons: Pollutant removal process and influence on soil functionality. Toxics 2022 10 8 474 10.3390/toxics10080474 36006154
    [Google Scholar]
  37. Zubair A. Pappoe M. James L.A. Hawboldt K. Development, optimization, validation and application of faster gas chromatography – flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils. J. Chromatogr. A 2015 1425 240 248 10.1016/j.chroma.2015.10.003 26607315
    [Google Scholar]
  38. Qiao M. Qi W. Liu H. Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. Environ. Int. 2022 163 107232 10.1016/j.envint.2022.107232 35427839
    [Google Scholar]
  39. Wang C. Zhou S. Wu S. Song J. Shi Y. Li B. Chen H. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. Water Sci. Technol. 2017 76 8 2150 2157 10.2166/wst.2017.387 29068344
    [Google Scholar]
  40. Vijayanand M. Ramakrishnan A. Subramanian R. Issac P.K. Nasr M. Khoo K.S. Rajagopal R. Greff B. Azelee W.N.I. Jeon B.H. Chang S.W. Ravindran B. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate. Environ. Res. 2023 227 115716 10.1016/j.envres.2023.115716 36940816
    [Google Scholar]
  41. Jesus F. Pereira J.L. Campos I. Santos M. Ré A. Keizer J. Nogueira A. Gonçalves F.J.M. Abrantes N. Serpa D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Sci. Total Environ. 2022 820 153282 10.1016/j.scitotenv.2022.153282 35066033
    [Google Scholar]
  42. Sun R. Sun Y. Li Q.X. Zheng X. Luo X. Mai B. Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment. Sci. Total Environ. 2018 640-641 264 272 10.1016/j.scitotenv.2018.05.320 29859442
    [Google Scholar]
  43. Othman B.H. Pick F.R. Hlaili S.A. Leboulanger C. Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae – A review. J. Hazard. Mater. 2023 441 129869 10.1016/j.jhazmat.2022.129869 36063709
    [Google Scholar]
  44. Zhang Y. Chen X. Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to in vivo metabolic transformation. Compr. Rev. Food Sci. Food Saf. 2021 20 2 1422 1456 10.1111/1541‑4337.12705 33506545
    [Google Scholar]
  45. Koszucka A. Nowak A. Thermal processing food-related toxicants: A review. Crit. Rev. Food Sci. Nutr. 2019 59 22 3579 3596 10.1080/10408398.2018.1500440 30311772
    [Google Scholar]
  46. Maulvault A.L. Machado R. Afonso C. Lourenço H.M. Nunes M.L. Coelho I. Langerholc T. Marques A. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food Chem. Toxicol. 2011 49 11 2808 2815 10.1016/j.fct.2011.07.059 21856365
    [Google Scholar]
  47. Hamidi E.N. Hajeb P. Selamat J. Lee S.Y. Razis A.A.F. Bioaccessibility of polycyclic aromatic hydrocarbons (PAHS) in grilled meat: The effects of meat doneness and fat content. Int. J. Environ. Res. Public Health 2022 19 2 736 10.3390/ijerph19020736 35055557
    [Google Scholar]
  48. Kafouris D. Koukkidou A. Christou E. Hadjigeorgiou M. Yiannopoulos S. Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus. Meat Sci. 2020 164 108088 10.1016/j.meatsci.2020.108088 32092623
    [Google Scholar]
  49. Masuda M. Wang Q. Tokumura M. Miyake Y. Amagai T. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods. Ecotoxicol. Environ. Saf. 2019 178 188 194 10.1016/j.ecoenv.2019.04.046 31009924
    [Google Scholar]
  50. Liu S. Meng F. Ding Z. Chi J. Phytoremediation of PAH-contaminated sediments with different organic matter contents by Potamogeton crispus L. Int. J. Phytoremed. 2018 20 13 1317 1323 10.1080/15226514.2018.1488811 30666897
    [Google Scholar]
  51. Ali M. Song X. Wang Q. Zhang Z. Zhang M. Chen X. Tang Z. Liu X. Thermally enhanced biodegradation of benzo[a]pyrene and benzene co-contaminated soil: Bioavailability and generation of ROS. J. Hazard. Mater. 2023 455 131494 10.1016/j.jhazmat.2023.131494 37172381
    [Google Scholar]
  52. Garg R. Piplani M. Singh Y. Bhateja P. Rana R. An overview of integrated risk factors with prevention and prevalence of asthma at the global level. Curr. Tradit. Med. 2024 10 4 e250523217358 10.2174/2215083810666230525153908
    [Google Scholar]
  53. Garg R. Piplani M. Upadhayay A. Singh Y. A review on comparison of allopathic medicines to other drug therapies in the management of asthma. Infect. Disord. Drug Targets 2023 24 1 124
    [Google Scholar]
  54. Ma L. Deng F. Yang C. Guo C. Dang Z. Bioremediation of PAH-contaminated farmland: Field experiment. Environ. Sci. Pollut. Res. Int. 2018 25 1 64 72 10.1007/s11356‑016‑7906‑4 27838911
    [Google Scholar]
  55. Bandowe B.A.M. Leimer S. Meusel H. Velescu A. Dassen S. Eisenhauer N. Hoffmann T. Oelmann Y. Wilcke W. Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils. Soil Biol. Biochem. 2019 129 60 70 10.1016/j.soilbio.2018.10.017
    [Google Scholar]
  56. Antizar-Ladislao B. Lopez-Real J. Beck A.J. Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches. J. Hazard. Mater. 2006 137 3 1583 1588 10.1016/j.jhazmat.2006.04.056 16797836
    [Google Scholar]
  57. Colombo M. Cavalca L. Bernasconi S. Andreoni V. Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: A feasibility study in solid- and slurry-phase microcosms. Int. Biodeterior. Biodegradation 2011 65 1 191 197 10.1016/j.ibiod.2010.11.002
    [Google Scholar]
  58. Dean-Ross D. Moody J.D. Freeman J.P. Doerge D.R. Cerniglia C.E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett. 2001 204 1 205 211 10.1111/j.1574‑6968.2001.tb10886.x 11682202
    [Google Scholar]
  59. Dean-Ross D. Moody J. Cerniglia C.E. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 2002 41 1 1 7 10.1111/j.1574‑6941.2002.tb00960.x 19709233
    [Google Scholar]
  60. Haritash A.K. Kaushik C.P. Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int. J. Environ. Sci. 2016 6 5 808 819
    [Google Scholar]
  61. Joner E.J. Johansen A. Loibner A.P. Cruz D.M.A. Szolar O.H.J. Portal J.M. Leyval C. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ. Sci. Technol. 2001 35 13 2773 2777 10.1021/es000288s 11452608
    [Google Scholar]
  62. Cao D. Huo Y. Zhang L. Zhang Y. Zhang Z. Huo M. Aerobic biodegradation of phenanthrene by a newly isolated Klebsiella sp. DS-1 from wastewater. J. Water Process Eng. 2023 53 103820 10.1016/j.jwpe.2023.103820
    [Google Scholar]
  63. Li X. Peng D. Zhang Y. Ju D. Guan C. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants. Ecotoxicol. Environ. Saf. 2020 201 110804 10.1016/j.ecoenv.2020.110804 32502907
    [Google Scholar]
  64. Qin S. Liu X. Lv W. Hu J. Huang X. Zhao L. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides. Biochem. Eng. J. 2023 191 108803 10.1016/j.bej.2022.108803
    [Google Scholar]
  65. Sun Z. Wang L. Yang S. Xun Y. Zhang T. Wei W. Thermally enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil. J. Environ. Chem. Eng. 2022 10 2 107236 10.1016/j.jece.2022.107236
    [Google Scholar]
  66. Yu J. Zhu S. Pang L. Chen P. Zhu G.T. Porphyrin-based magnetic nanocomposites for efficient extraction of polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 2018 1540 1 10 10.1016/j.chroma.2018.02.006 29433823
    [Google Scholar]
  67. Geng S. Xu G. You Y. Xia M. Zhu Y. Ding A. Fan F. Dou J. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. Environ. Res. 2022 212 Pt A 113191 10.1016/j.envres.2022.113191 35351456
    [Google Scholar]
  68. Zhou Z.Y. Yang L. Wang M.X. Zhou Z.F. Biochar amendment promoted the maize growth and changed bacterial community assembly in a phenanthrene-contaminated soil. J. Soil Sci. Plant Nutr. 2023 23 3 3010 3022 10.1007/s42729‑023‑01252‑0
    [Google Scholar]
  69. Shi Z. Wen M. Zhang J. Tang Z. Wang C. Effect of phenanthrene on the biological characteristics of earthworm casts and their relationships with digestive and anti-oxidative systems. Ecotoxicol. Environ. Saf. 2020 193 110359 10.1016/j.ecoenv.2020.110359 32097786
    [Google Scholar]
  70. Zhang Z. Sun J. Gong X. Wang C. Wang H. Anaerobic biodegradation of pyrene and benzo[a]pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA. J. Hazard. Mater. 2023 459 132053 10.1016/j.jhazmat.2023.132053 37482040
    [Google Scholar]
  71. Qian Z. Peng T. Huang T. Hu Z. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment. J. Environ. Manage. 2022 321 115922 10.1016/j.jenvman.2022.115922 36027730
    [Google Scholar]
  72. Mazarji M. Minkina T. Sushkova S. Mandzhieva S. Fedorenko A. Bauer T. Soldatov A. Barakhov A. Dudnikova T. Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil. Environ. Geochem. Health 2022 44 1 195 206 10.1007/s10653‑020‑00801‑1 33411119
    [Google Scholar]
  73. Nzila A. Musa M.M. Current status of and future perspectives in bacterial degradation of benzo [a] pyrene. Int. J. Environ. Res. Public Health 2020 18 1 262 10.3390/ijerph18010262 33396411
    [Google Scholar]
  74. Ismail N.A. Kasmuri N. Hamzah N. Jaafar J. Mojiri A. Kindaichi T. Influence of pH and concentration on the growth of bacteria - fungus and benzo[a]pyrene degradation. Environ. Technol. Innov. 2023 29 102995 10.1016/j.eti.2022.102995
    [Google Scholar]
  75. Nzila A. Musa M.M. Afuecheta E. Al-Thukair A. Sankaran S. Xiang L. Li Q.X. Benzo[A]pyrene biodegradation by multiple and individual mesophilic bacteria under axenic conditions and in soil samples. Int. J. Environ. Res. Public Health 2023 20 3 1855 10.3390/ijerph20031855 36767220
    [Google Scholar]
  76. Goveas L.C. Selvaraj R. Vinayagam R. Sajankila S.P. Pugazhendhi A. Biodegradation of benzo(a)pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway. Chemosphere 2023 321 138066 10.1016/j.chemosphere.2023.138066 36781003
    [Google Scholar]
  77. Elyamine A.M. Kan J. Meng S. Tao P. Wang H. Hu Z. Aerobic and anaerobic bacterial and fungal degradation of pyrene: Mechanism pathway including biochemical reaction and catabolic genes. Int. J. Mol. Sci. 2021 22 15 8202 10.3390/ijms22158202 34360967
    [Google Scholar]
  78. Kumari S. Gautam K. Seth M. Anbumani S. Manickam N. Bioremediation of polycyclic aromatic hydrocarbons in crude oil by bacterial consortium in soil amended with Eisenia fetida and rhamnolipid. Environ. Sci. Pollut. Res. Int. 2023 30 34 82517 82531 10.1007/s11356‑023‑28082‑y 37326724
    [Google Scholar]
  79. García de Llasera M.P. Pérez F.A.C. Marín P.G. Calva B.E.G. First evidence of extracellular enzymatic degradation of benzo(a)pyrene by the phytoplankton species Selenastrumcapricornutum and the influence of temperature. Environ. 2022 8 100246
    [Google Scholar]
  80. Jin J. Shi Y. Zhang B. Wan D. Zhang Q. Li Y. Biotransformation of benzo[ a ]pyrene by Pannonibacter sp. JPA3 and the degradation mechanism through the initially oxidized benzo[ a ]pyrene-4,5-dihydrodiol to downstream metabolites. RSC Advances 2023 13 27 18878 18887 10.1039/D3RA01453C 37350855
    [Google Scholar]
  81. Suresh R. Subashchandrabose, kadiyala venkateswarlu, ravi naidu, mallavarapu megharaj, biodegradation of high-molecular weight PAHs by Rhodococcuswratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. Sci. Total Environ. 2019 651 Part 1 813 821
    [Google Scholar]
  82. Zou X. Su Q. Yi Q. Guo L. Chen D. Wang B. Li Y. Li J. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. J. Hazard. Mater. 2023 456 131666 10.1016/j.jhazmat.2023.131666 37236106
    [Google Scholar]
  83. Ding Z. Yi Y. Wang W. Zhang Q. Atmospheric degradation of chrysene initiated by OH radical: A quantum chemical investigation. Chemosphere 2021 263 128267 10.1016/j.chemosphere.2020.128267 33297211
    [Google Scholar]
  84. Thomas S. Veettil N.T. Subbiah K. Isolation, characterization and optimization of chrysene degradation using bacteria isolated from oil-contaminated water. Water Sci. Technol. 2021 84 10-11 2737 2748 10.2166/wst.2021.227 34850690
    [Google Scholar]
  85. Bastolla C.L.V. Lima D. Mattos J.J. Dias V.H.V. Righetti B.P.H. Gomes C.H.A.M. Cella H. Reis I.M.M. Saldaña-Serrano M. Ferreira C.P. Bícego M.C. Taniguchi S. Zacchi F.L. Bainy A.C.D. Comparative biochemical and molecular responses of biotransformation and antioxidant systems in three species of Crassostrea (Sacco, 1897) oysters exposed to chrysene. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 270 109642 10.1016/j.cbpc.2023.109642 37169212
    [Google Scholar]
  86. Luo J. Wu L. Chen Y. Feng L. Cao J. Integrated approach to enhance the anaerobic biodegradation of benz[α]anthracene: A high-molecule-weight polycyclic aromatic hydrocarbon in sludge by simultaneously improving the bioavailability and microbial activity. J. Hazard. Mater. 2019 365 322 330 10.1016/j.jhazmat.2018.11.012 30447640
    [Google Scholar]
  87. Luo J. Deng J. Cui L. Chang P. Dai X. Yang C. Li N. Ren Z. Zhang X. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in the biodegradation of benz(a)anthracene and the related mechanism analysis. Chemosphere 2020 249 126097 10.1016/j.chemosphere.2020.126097 32078851
    [Google Scholar]
  88. Guntupalli S. Thunuguntla V.B.S.C. Chalasani L.M. Rao C.V. Bondili J.S. Degradation and metabolite profiling of benz (a) anthracene, dibenz (a, h) anthracene and indeno [1, 2, 3-cd] pyrene by Aspergillus terricola. Polycycl. Aromat. Compd. 2019 39 1 84 92 10.1080/10406638.2016.1262878
    [Google Scholar]
  89. Dai Y. Liu R. Chen J. Li N. Bioremediation of HMW-PAHs-contaminated soils by rhizosphere microbial community of Fire Phoenix plants. Chem. Eng. J. 2022 432 134246 10.1016/j.cej.2021.134246
    [Google Scholar]
  90. Wang L. Yan Z. Yan H. Hao Z. Huang J. Jiang H. Magnetic loofah sponge biochar facilitates microbial interspecies cooperation in surface and subsurface sediments for enhanced PAH biodegradation. Environ. Pollut. 2023 334 122185 10.1016/j.envpol.2023.122185
    [Google Scholar]
  91. Dhar K. Sivaram A.K. Panneerselvan L. Venkateswarlu K. Megharaj M. Efficient bioremediation of laboratory wastewater co-contaminated with PAHs and dimethylformamide by a methylotrophic enrichment culture. J. Environ. Manage. 2023 325 Pt A 116425 10.1016/j.jenvman.2022.116425 36240642
    [Google Scholar]
  92. Alagić S.Č. Maluckov B.S. Radojičić V.B. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technol. Environ. Policy 2015 17 3 597 614 10.1007/s10098‑014‑0840‑6
    [Google Scholar]
  93. Khalid F.N.M. Klarup D. The influence of sunlight and oxidative treatment on measured PAH concentrations in biochar. Environ. Sci. Pollut. Res. Int. 2015 22 17 12975 12981 10.1007/s11356‑015‑4469‑8 25916471
    [Google Scholar]
  94. Eker G. Şengül B. Cindoruk S.S. Performance evaluation of diethylamine to the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted soils with sunlight. Polycycl. Aromat. Compd. 2021 41 2 306 318 10.1080/10406638.2019.1578809
    [Google Scholar]
  95. Zhu X. Ni X. Waigi M. Liu J. Sun K. Gao Y. Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int. J. Environ. Res. Public Health 2016 13 8 805 10.3390/ijerph13080805 27517944
    [Google Scholar]
  96. Liang C. Ye Q. Huang Y. Wang Y. Zhang Z. Wang H. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. J. Hazard. Mater. 2022 437 129305 10.1016/j.jhazmat.2022.129305 35709619
    [Google Scholar]
  97. Li S. Gao X. Zhu S. Liang H. Polycyclic aromatic hydrocarbons (PAHs) in coal preparation plant products: A contributor to environmental pollution. Sci. Total Environ. 2024 906 167887 10.1016/j.scitotenv.2023.167887 37852503
    [Google Scholar]
  98. Zhao Z. He W. Wu R. Xu F. Distribution and relationships of polycyclic aromatic hydrocarbons (PAHS) in soils and plants near major lakes in eastern china. Toxics 2022 10 10 577 10.3390/toxics10100577 36287857
    [Google Scholar]
  99. Zain ul Arifeen M. Ma Y. Wu T. Chu C. Liu X. Jiang J. Li D. Xue Y.R. Liu C.H. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor. Chemosphere 2022 303 Pt 2 135062 10.1016/j.chemosphere.2022.135062 35618067
    [Google Scholar]
  100. Hadibarata T. Kristanti R.A. Bilal M. Al-Mohaimeed A.M. Chen T.W. Lam M.K. Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032. Chemosphere 2022 307 Pt 3 136014 10.1016/j.chemosphere.2022.136014 35970216
    [Google Scholar]
  101. Dell’ Anno F. Rastelli E. Sansone C. Brunet C. Ianora A. Dell’ Anno A. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms 2021 9 8 1695 10.3390/microorganisms9081695 34442774
    [Google Scholar]
  102. Tomar R.S. Rai-Kalal P. Jajoo A. Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris. Algal Res. 2022 67 102815 10.1016/j.algal.2022.102815
    [Google Scholar]
  103. Wang M. Zhang W. He T. Rong L. Yang Q. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: Green and sustainable technology. Arch. Microbiol. 2024 206 1 10 10.1007/s00203‑023‑03734‑2 38059992
    [Google Scholar]
  104. Satpati G.G. Gupta S. Biswas R.K. Choudhury A.K. Kim J.W. Davoodbasha M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. Chemosphere 2023 344 140337 10.1016/j.chemosphere.2023.140337 37797901
    [Google Scholar]
  105. Heys K.A. Shore R.F. Pereira M.G. Jones K.C. Martin F.L. Risk assessment of environmental mixture effects. RSC Advances 2016 6 53 47844 47857 10.1039/C6RA05406D
    [Google Scholar]
  106. Carpenter D.O. Arcaro K. Spink D.C. Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 2002 110 Suppl 1 Suppl. 1 25 42 10.1289/ehp.02110s125 11834461
    [Google Scholar]
/content/journals/biot/10.2174/0118722083343885250326070617
Loading
/content/journals/biot/10.2174/0118722083343885250326070617
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: microbiomes ; catastrophic pollutants ; chrysene ; Bioremediation ; environment ; pyrene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test