Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Background

The increasing industrialization and hydrocarbon use have led to concerning soil contamination. Oil spills and improper disposal of oily waste pose threats to ecosystems and human health. The recovery of these environments is essential, but separating oily components from soil remains challenging. Current bioremediation strategies using synthetic surfactants can cause secondary contamination. Microbial biosurfactants, which are biodegradable and low in toxicity, emerge as promising solutions, and this study reviews methods for utilizing these biosurfactants in the environmental bioremediation of hydrocarbons.

Objective

This study explores the efficient and eco-friendly use of biosurfactants for hydrocarbon-contaminated soil management, providing a market-oriented analysis of recent patents and trends, and highlighting the transition from academic research to industrial applications.

Methods

The methodology involves an extensive literature review, careful selection of recent studies and patents on biosurfactants in hydrocarbon bioremediation, critical analysis of and application methods, assessment of commercial viability, and synthesis of findings to contribute to sustainable solutions in contaminated environments.

Conclusion

The present study demonstrates the extensive applicability of biosurfactants across various industrial sectors. The increasing interest in incorporating biosurfactants into industrial processes is driven by the pressing need for sustainable solutions to address tangible market challenges. Notably, the cosmetics industry exhibited the highest number of patents related to the use of biosurfactants, underscoring its significant role in advancing the adoption of these environmentally friendly agents. This trend highlights the critical demand for sustainable alternatives in product formulations and underscores the pivotal role of biosurfactants in fostering eco-innovation within the industry.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083343490241130163344
2024-12-18
2025-10-21
Loading full text...

Full text loading...

References

  1. DaiC. HanY. DuanY. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments.Environ. Res.202220511242310.1016/j.envres.2021.112423 34838568
    [Google Scholar]
  2. MorilloE. MadridF. Lara-MorenoA. VillaverdeJ. Soil bioremediation by cyclodextrins. A review.Int. J. Pharm.202059111994310.1016/j.ijpharm.2020.119943 33065221
    [Google Scholar]
  3. HaripriyanU. GopinathK.P. ArunJ. GovarthananM. Bioremediation of organic pollutants: A mini review on current and critical strategies for wastewater treatment.Arch. Microbiol.2022204528610.1007/s00203‑022‑02907‑9 35478273
    [Google Scholar]
  4. ŁawniczakŁ. Woźniak-KarczewskaM. LoibnerA.P. HeipieperH.J. ChrzanowskiŁ. Microbial degradation of hydrocarbons - Basic principles for bioremediation: A review.Molecules202025485610.3390/molecules25040856 32075198
    [Google Scholar]
  5. DangeP. PanditS. JadhavD. Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock.Sustainability (Basel)20211316879610.3390/su13168796
    [Google Scholar]
  6. HuynhB.Q. KwongL.H. KiangM.V. Public health impacts of an imminent Red Sea oil spill.Nat. Sustain.20214121084109110.1038/s41893‑021‑00774‑8 34926834
    [Google Scholar]
  7. XiK.F. HuW.F. LiD.C. JiangS.F. JiangH. Investigations on the dissolved organic matter leached from oil-contaminated soils by using pyrolysis remediation method.Sci. Total Environ.202177614592110.1016/j.scitotenv.2021.145921 33640555
    [Google Scholar]
  8. PolyakY.M. BakinaL.G. ChugunovaM.V. MayachkinaN.V. GerasimovA.O. BureV.M. Effect of remediation strategies on biological activity of oil-contaminated soil - A field study.Int. Biodeterior. Biodegradation2018126576810.1016/j.ibiod.2017.10.004
    [Google Scholar]
  9. KuppusamyS. MaddelaN.R. MegharajM. VenkateswarluK. Impact of total petroleum hydrocarbons on human health.In: Total Petroleum Hydrocarbons.ChamSpringer International Publishing202013916510.1007/978‑3‑030‑24035‑6_6
    [Google Scholar]
  10. StanleyM. PalaceV. GrosshansR. LevinD.B. Floating treatment wetlands for the bioremediation of oil spills: A review.J. Environ. Manage.202231711541610.1016/j.jenvman.2022.115416 35653839
    [Google Scholar]
  11. WangN. ChenZ. LiH.B. SuJ.Q. ZhaoF. ZhuY.G. Bacterial community composition at anodes of microbial fuel cells for paddy soils: The effects of soil properties.J. Soils Sediments201515492693610.1007/s11368‑014‑1056‑4
    [Google Scholar]
  12. KaliaA. SharmaS. SemorN. Recent advancements in hydrocarbon bioremediation and future challenges: A review.Biotech202212613510.1007/s13205‑022‑03199‑y 35620568
    [Google Scholar]
  13. SharmaS. PandeyL.M. Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil.Bioresour. Technol.202030712326110.1016/j.biortech.2020.123261 32247277
    [Google Scholar]
  14. OualhaM. Al-KaabiN. Al-GhoutiM. ZouariN. Identification and overcome of limitations of weathered oil hydrocarbons bioremediation by an adapted Bacillus sorensis strain.J. Environ. Manage.201925010945510.1016/j.jenvman.2019.109455 31491718
    [Google Scholar]
  15. LiF. ZhangY. WangS. Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach.Chem. Eng. J.202038512394610.1016/j.cej.2019.123946
    [Google Scholar]
  16. TsatsarisA. KalogeropoulosK. StathopoulosN. Geoinformation technologies in support of environmental hazards monitoring under climate change: An extensive review.ISPRS Int. J. Geoinf.20211029410.3390/ijgi10020094
    [Google Scholar]
  17. LiuY. WanY.Y. WangC. MaZ. LiuX. LiS. Biodegradation of n-alkanes in crude oil by three identified bacterial strains.Fuel202027511789710.1016/j.fuel.2020.117897
    [Google Scholar]
  18. SunR. WangL. JiangC. DuZ. ChenS. WuW. A highly efficient BODIPY based turn-off fluorescent probe for detecting Cu2+.J. Fluoresc.202030488389010.1007/s10895‑020‑02544‑9 32494936
    [Google Scholar]
  19. DecesaroA. RempelA. MachadoT.S. Bacterial biosurfactant increases ex situ biodiesel bioremediation in clayey soil.Biodegradation202132438940110.1007/s10532‑021‑09944‑z 33864197
    [Google Scholar]
  20. Kumar GuptaP. Fate, transport, and bioremediation of biodiesel and blended biodiesel in subsurface environment: A review.J. Environ. Eng.202014610311900110.1061/(ASCE)EE.1943‑7870.0001619
    [Google Scholar]
  21. MuhammadM. BatoolS. HivareV. LiW-J. WaheedA. SinhaD. Bioremediation techniques - Classification, principles, advantages, limitations, and prospects.In: Microbiome-Assisted Bioremediation.Elsevier202412310.1016/B978‑0‑443‑21911‑5.00003‑9
    [Google Scholar]
  22. FangH-Y. ChaneyR.C. Introduction to Environmental Geotechnology.2nd edBoca RatonCRC Press201610.1201/9781315374734
    [Google Scholar]
  23. SarkarD. Shikha RakeshS. GangulyS. RakshitA. Management of increasing soil pollution in the ecosystem.Adv. Res.2017121910.9734/AIR/2017/36622
    [Google Scholar]
  24. VoccianteM. DovìV. FerroS. Sustainability in electrokinetic remediation processes: A critical analysis.Sustainability (Basel)202113277010.3390/su13020770
    [Google Scholar]
  25. EdwardsS.J. KjellerupB.V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals.Appl. Microbiol. Biotechnol.201397239909992110.1007/s00253‑013‑5216‑z 24150788
    [Google Scholar]
  26. LiX. WuY. TanZ. An overview on bioremediation technologies for soil pollution in E-waste dismantling areas.J. Environ. Chem. Eng.202210310783910.1016/j.jece.2022.107839
    [Google Scholar]
  27. JabbarN.M. AlardhiS.M. MohammedA.K. SalihI.K. AlbayatiT.M. Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review.Environ. Nanotechnol. Monit. Manag.20221810069410.1016/j.enmm.2022.100694
    [Google Scholar]
  28. PatelA.K. SinghaniaR.R. AlbaricoF.P.J.B. PandeyA. ChenC.W. DongC.D. Organic wastes bioremediation and its changing prospects.Sci. Total Environ.202282415388910.1016/j.scitotenv.2022.153889 35181362
    [Google Scholar]
  29. GaurV.K. GautamK. SharmaP. Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation.Sci. Total Environ.202283215508310.1016/j.scitotenv.2022.155083 35395309
    [Google Scholar]
  30. SharmaN. LavaniaM. LalB. Biosurfactant: An emerging tool for the petroleum industries.Front. Microbiol.202314125455710.3389/fmicb.2023.1254557 37771700
    [Google Scholar]
  31. LiY. YangS. MuB. The surfactin and lichenysin isoforms produced by Bacillus licheniformis HSN 221.Anal. Lett.201043692994010.1080/00032710903491047
    [Google Scholar]
  32. SharmaJ. SundarD. SrivastavaP. Biosurfactants: Potential agents for controlling cellular communication, motility, and antagonism.Front. Mol. Biosci.2021872707010.3389/fmolb.2021.727070 34708073
    [Google Scholar]
  33. FardamiA.Y. KawoA.H. YahayaS. LawalI. AbubakarA.S. MaiyadiK.A. A review on biosurfactant properties, production and producing microorganisms.J Biochem Microbiol Biotechnol20221051210.54987/jobimb.v10i1.656
    [Google Scholar]
  34. JimohA.A. LinJ. Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel.Int. J. Environ. Sci. Technol.2019164143415810.1007/s13762‑019‑02341‑3
    [Google Scholar]
  35. RanaS. HandaS. AggarwalY. PuriS. ChatterjeeM. Role of Candida in the bioremediation of pollutants: A review.Lett. Appl. Microbiol.2023769ovad10310.1093/lambio/ovad103 37673682
    [Google Scholar]
  36. Cenčič PredikakaT. MastnakT. Svoljšak JermanM. FinšgarM. Ex situ bioremediation of diesel fuel-contaminated soil in two different climates.Int. J. Phytoremediation202325141881188910.1080/15226514.2023.2204165 37125609
    [Google Scholar]
  37. LeeC HongS NohJ Comparative evaluation of bioremediation techniques on oil contaminated sediments in long-term recovery of benthic community health.Environ Pollut2019252Pt A1374510.1016/j.envpol.2019.05.10031146227
    [Google Scholar]
  38. Nogueira FelixA.K. MartinsJ.J.L. Lima AlmeidaJ.G. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil.Colloids Surf. B Biointerfaces201917525626310.1016/j.colsurfb.2018.11.062 30544045
    [Google Scholar]
  39. MachadoT.S. DecesaroA. CappellaroÂ.C. Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil.Ecotoxicol. Environ. Saf.202020111079810.1016/j.ecoenv.2020.110798 32526591
    [Google Scholar]
  40. JimohA.A. LinJ. Biotechnological applications of Paenibacillus sp. D9 lipopeptide biosurfactant produced in low-cost substrates.Appl. Biochem. Biotechnol.2020191392194110.1007/s12010‑020‑03246‑5 31933124
    [Google Scholar]
  41. DhaliwalS.S. SinghJ. TanejaP.K. MandalA. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review.Environ. Sci. Pollut. Res. Int.20202721319133310.1007/s11356‑019‑06967‑1 31808078
    [Google Scholar]
  42. OkekeE.S. OkoyeC.O. Chidike EzeorbaT.P. Emerging bio-dispersant and bioremediation technologies as environmentally friendly management responses toward marine oil spill: A comprehensive review.J. Environ. Manage.202232211612310.1016/j.jenvman.2022.116123 36063698
    [Google Scholar]
  43. NikolovaC. GutierrezT. Biosurfactants and their applications in the oil and gas industry: Current state of knowledge and future perspectives.Front. Bioeng. Biotechnol.2021962663910.3389/fbioe.2021.626639 33659240
    [Google Scholar]
  44. WuR. TianM. ShuC. ZhouC. GuanW. Determination of the critical micelle concentration of surfactants using fluorescence strategies.Soft Matter202218478920893010.1039/D2SM01320G 36440607
    [Google Scholar]
  45. WangM. ChenS. JiaX. ChenL. Concept and types of bioremediation.In: Handbook of Bioremediation.Elsevier20213810.1016/B978‑0‑12‑819382‑2.00001‑6
    [Google Scholar]
  46. MaoX. JiangR. XiaoW. YuJ. Use of surfactants for the remediation of contaminated soils: A review.J. Hazard. Mater.201528541943510.1016/j.jhazmat.2014.12.009 25528485
    [Google Scholar]
  47. NgYJ LimHR KhooKS Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based surfactants.Environ Res2022212Pt A11312610.1016/j.envres.2022.11312635341755
    [Google Scholar]
  48. BodorA. PetrovszkiP. Erdeiné KisÁ. Intensification of ex situ bioremediation of soils polluted with used lubricant oils: A comparison of biostimulation and bioaugmentation with a special focus on the type and size of the inoculum.Int. J. Environ. Res. Public Health20201711410610.3390/ijerph17114106 32526873
    [Google Scholar]
  49. AmbayeT.G. ChebbiA. FormicolaF. Ex-situ bioremediation of petroleum hydrocarbon contaminated soil using mixed stimulants: Response and dynamics of bacterial community and phytotoxicity.J. Environ. Chem. Eng.202210610881410.1016/j.jece.2022.108814
    [Google Scholar]
  50. OstendorfT.A. SilvaI.A. ConvertiA. SarubboL.A. Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater.J. Biotechnol.2019295717910.1016/j.jbiotec.2019.01.025 30871886
    [Google Scholar]
  51. da Silva FaccioliY.E. da SilvaG.O. da SilvaR.C.F.S. SarubboL.A. Application of a biosurfactant from Pseudomonas cepacia CCT 6659 in bioremediation and metallic corrosion inhibition processes.J. Biotechnol.202235110912110.1016/j.jbiotec.2022.04.009 35500704
    [Google Scholar]
  52. SantosD.K.F. ResendeA.H.M. de AlmeidaD.G. Candida lipolytica UCP0988 biosurfactant: Potential as a bioremediation agent and in formulating a commercial related product.Front. Microbiol.2017876710.3389/fmicb.2017.00767 28507538
    [Google Scholar]
  53. SantosEM da S Lira IRA daS. MeiraH.M. Application of the biosurfactant produced by Candida sphaerica as a bioremediation agent.Chem. Eng. Trans.202079451456
    [Google Scholar]
  54. ChristopherJ.M. SridharanR. SomasundaramS. GanesanS. Bioremediation of aromatic hydrocarbons contaminated soil from industrial site using surface modified amino acid enhanced biosurfactant.Environ. Pollut.202128911791710.1016/j.envpol.2021.117917 34426191
    [Google Scholar]
  55. ChaprãoM.J. FerreiraI.N.S. CorreaP.F. Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand.Electron. J. Biotechnol.201518647147910.1016/j.ejbt.2015.09.005
    [Google Scholar]
  56. SilvaE.J. CorreaP.F. AlmeidaD.G. LunaJ.M. RufinoR.D. SarubboL.A. Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation.Colloids Surf. B Biointerfaces201817212713510.1016/j.colsurfb.2018.08.034 30145458
    [Google Scholar]
  57. BustamanteR de A OliveiraJS SantosBF Modeling biosurfactant production from agroindustrial residues by neural networks and polynomial models adjusted by particle swarm optimization202330646691[ESPR].
    [Google Scholar]
  58. KumarA. SinghS.K. KantC. Microbial biosurfactant: A new frontier for sustainable agriculture and pharmaceutical industries.Antioxidants2021109147210.3390/antiox10091472 34573103
    [Google Scholar]
  59. ZangT. WuH. YanB. ZhangY. WeiC. Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs.Chemosphere202126612894110.1016/j.chemosphere.2020.128941 33190915
    [Google Scholar]
  60. SharmaN. LavaniaM. LalB. Biosurfactant: A next-generation tool for sustainable remediation of organic pollutants.Front. Microbiol.20221282153110.3389/fmicb.2021.821531 35265051
    [Google Scholar]
  61. HussainA. RehmanF. RafeeqH. In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air – A review.Chemosphere202228913325210.1016/j.chemosphere.2021.133252 34902385
    [Google Scholar]
  62. BarlowL.R. PhilpJ.C. Suspicions to solutions: Characterizing contaminated land.In: Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup.Washington, DC, USAASM Press2014498510.1128/9781555817596.ch2
    [Google Scholar]
  63. KannaR. Enhanced and cost-effective biosurfactant production for marine remediation contaminated with oil spill.Int J Civ Eng Technol20189373381
    [Google Scholar]
  64. DurvalI.J.B. MendonçaA.H.R. RochaI.V. Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation.Mar. Pollut. Bull.202015711135710.1016/j.marpolbul.2020.111357 32658706
    [Google Scholar]
  65. DeivakumariM. SanjivkumarM. SuganyaA.M. PrabakaranJ.R. PalavesamA. ImmanuelG. Studies on reclamation of crude oil polluted soil by biosurfactant producing Pseudomonas aeruginosa (DKB1).Biocatal. Agric. Biotechnol.20202910177310.1016/j.bcab.2020.101773
    [Google Scholar]
  66. LiraIR da S Santos EM daS. FilhoA.A.P.S. Biosurfactant production from Candida guilliermondii and evaluation of its toxicity.Chem. Eng. Trans.202079457462
    [Google Scholar]
  67. KorbutR. SkjoldingL.M. MathiessenH. Toxicity of the antiparasitic lipopeptide biosurfactant SPH6 to green algae, cyanobacteria, crustaceans and zebrafish.Aquat. Toxicol.202224310607210.1016/j.aquatox.2021.106072 35032912
    [Google Scholar]
  68. GiduduB. ChirwaE.M.N. Evaluation of the toxicity of a rhamnolipid biosurfactant for its application in the optimization of the bio-electrokinetic remediation of petrochemical contaminated soil.Clean. Eng. Technol.2022910052110.1016/j.clet.2022.100521
    [Google Scholar]
  69. LiX. KarakashevS.I. EvansG.M. StevensonP. Effect of environmental humidity on static foam stability.Langmuir20122894060406810.1021/la205101d 22303917
    [Google Scholar]
  70. DuW. WanY. ZhongN. Status quo of soil petroleum contamination and evolution of bioremediation.Petrol. Sci.20118450251410.1007/s12182‑011‑0168‑3
    [Google Scholar]
  71. TrippeA. Guidelines for Preparing Patent Landscape Reports.WIPOSwitzerland2015
    [Google Scholar]
  72. SpezialiM. NascimentoR. Patentometry: An indispensable tool in the study of technology development for the chemical industry.Quim. Nova2020431010.21577/0100‑4042.20170620
    [Google Scholar]
  73. JinheeP. Biosurfactant-secreting bacteria and its utilization method.KR Patent 20020011251A2003
  74. JinheeP. Bioremediation method for oil-spoiled soil using microorganism-treating apparatus and bioreactors.KR Patent 20030066072A2004
  75. LeeM.J. KwonM. Method for bioremediation of oil-contaminated soils using a specific microorganism and biosurfactant agent.KR Patent 200500435062005
  76. BrigmonR. StoryS. AltmanD. BerryC. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals.US Patent 20050106702A12009
  77. BrigmonR. StoryS. AltmanD. BerryC. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals.WO Patent 2006085848A12006
  78. BrigmonR. StoryS. AltmanD. BerryC. Surfactant biocatalyst for the degradation of recalcitrant organic compounds and heavy metals.EP Patent 2360239A22011
  79. GantiS. GantiD. Production of biomass and single cell protein from industrial waste oils, oily sludge from ships and other sources of oily wastes.US Patent 20050227338A12005
  80. ParkB. LeeM. KwonM. GwakH. KimM. KimY. Novel microorganisms having oil biodegradability and method for bioremediation of oil-contaminated soil.US Patent 20080020947A12008
  81. BrigmonR. StoryS. AltmanD. BerryC. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metalsUS Patent 20070249034A12011
  82. BrigmonR. StoryS. AltmanD. BerryC. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals.US patent 7915027B22011
  83. ChangshJ. ChenA. WeiY. Method for producing biosurfactant.TW patent 200909584A2009
  84. ChengS.S. WhangL.M. LiuP.W. LinT.C. TsengI.C. ChangT.C. YoungC.C. ChangJ.S. PanP.T. LiaoY.T. FanY.C. Bioremediation of oil-contaminated soil and/or groundwater.TW200909590A2009
  85. KeelerS.J. FallonR.D. HendricksonE.R. HnatowL.L. JacksonS.C. PerryM.P. Identification, characterization, and application of Pseudomonas stutzeri (LH4:15), useful in microbially enhanced oil release.US Patent 8357526B22009
  86. KeelerS.J. HendricksonE.R. HnatowL.L. JacksonS.C. Identification, characterization, and application of Shewanella putrefaciens (lh4:18), useful in microbially enhanced oil release.US patent 20090260803A12013
  87. KeelerS.J. FallonR.D. HendricksonE.R. HnatowL.L. JacksonS.C. PerryM.P. Identification, characterization, and application of Pseudomonas stutzeri (lh4:15), useful in microbially enhanced oil release.US Patent 20090263887A12011
  88. KeelerS.J. HendricksonE.R. HnatowL.L. JacksonS.C. Identification, characterization, and application of Shewanella putrefaciens (LH4:18), useful in microbially enhanced oil release.US Patent 7776795B22009
  89. KeelerS.J. HnatowL.L. Application of anaerobic denitrifying bacteria utilizing petroleum components as sole carbon source for oil.US Patent 20090082227A12009
  90. HnatowL.L. KeelerS.J. Application of anaerobic denitrifying bacteria utilizing petroleum components as sole carbon source for oil recovery.WO patent 2009029500A12009
  91. HendricksonE.R. JacksonR.E. KeelerS.J. LuckringA.K. PerryM.P. WolstenholmeS. Identification, characterization, and application of Thauera sp. AL9:8 useful in microbially enhanced oil recovery.US Patent 7708065B22010
  92. HendricksonE.R. JacksonR.E. KeelerS.J. LuckringA.K. PerryM.P. WolstenholmeS. Identification, characterization, and application of Thauera sp. al9:8 useful in microbially enhanced oil recovery.US Patent 20100078162A12010
  93. KeelerS.J. FallonR.D. HendricksonE.R. HnatowL.L. JacksonS.C. PerryM.P. Identification, characterization and application of Pseudomonas stutzeri (LH4:15) which is useful for microbial improvement of oil separation.EP Patent 2282852B12013
  94. KeelerS.J. FallonR.D. HendricksonE.R. HnatowL.L. JacksonS.C. PerryM.P. Identification, characterization, and application of Pseudomonas stutzeri (lh4:15), useful in microbially enhanced oil release.WO Patent 2009129427A12013
  95. KeelerS.J. HendricksonE.R. HnatowL.L. JacksonS.C. Identification, characterization and application of Shewanella putrefaciens suitable for microbially enhanced oil release (LH4:18).EP Patent 2271740B12013
  96. HendricksonE.R. JacksonR.E. KeelerS.J. LuckringA.K. PerryM.P. WolstenholmeS. Identification, characterization, and application of Thauera sp. al9:8 useful in microbially enhanced oil recoveryWO Patent 2010037000A12010
  97. HendricksonE.R. JacksonR.E. KeelerS.J. LuckringA.K. PerryM.P. WolstenholmeS. Identification, characterization and application of Thauera sp. suitable for microbially improved oil production. al9:8. European Patent Office.EP patent 2331674B12012
  98. GantiS. Green process for production of biosurfactants or biopolymers through waste oil utilization.US Patent 20110151100A12011
  99. HendricksonE.R. LuckringA.K. KeelerS.J. PerryM.P. ChobanE.R. Method of in situ bioremediation of hydrocarbon-contaminated sites using an enriched anaerobic steady state microbial consortium.US patent 20100216219A12010
  100. HendricksonE.R. JacksonR.E. KeelerS.J. LuckringA.K. PerryM.P. WolstenholmeS. Identification, characterization, and application of Thauera sp. al9:8 useful in microbially enhanced oil recovery.WO Patent 2010037000A12020
  101. QingH. QianW. JiandongJ. RongL. ShunpengL. Bacterial strain for generating rhamnolipid biosurfactant and generated microbial inoculum thereof.CN Patent 101948793A2011
  102. QingH. QianW. JiandongJ. RongL. ShunpengL. Bacterial strain for generating rhamnolipid biosurfactant and generated microbial inoculum thereof.CN Patent 101948793B2012
  103. MiddelbergA.P.J. Dimitrijev-DwyerM. BrechM. Designed biosurfactants, their manufacture, purification and use.US Patent 20150031600A12015
  104. MiddelbergA.P.J. Dimitrijev-DwyerM. BrechM. Designed biosurfactants, their manufacture, purification and use.WO Patent 2012079125A12012
  105. AngelJ. Compositions and methods of use.US Patent 20140273150A12014
  106. AngelJ. Composition and methods of use.WO Patent 2014152350A12014
    [Google Scholar]
  107. KrasowskaA. LukaszewiczM. GrzywaczD. KamyszW. Pseudofactin derivatives, a method of synthesizing pseudofactin derivatives and their use.EP Patent 3000821A12016
  108. KjolhamarA. SkarstadA. Enhanced oil recovery and environmental remediationWO Patent 20161223322018
  109. KjolhamarA. SkarstadA. KotlarH.K. Enhanced oil recovery and environmental remediation.CA Patent 2974914A12016
  110. KjolhamarA. SkarstadA. Enhanced oil recovery and environmental remediation.US Patent 20180016883A12018
  111. ZhangF. A kind of composite bacteria agent capable for deep-seated oil contaminated soil biological restoration technique.CN Patent 106244479A2016
  112. WangZ. A process for the bioremediation of hydrocarbons in contaminated soil or sediment.AU Patent 2016101966A2016
  113. FarmerS. AlibekK. MazumderS. AdamsK. DixonT. ChenY. MilanovicM. Microbial products and uses thereof for improving oil recovery.EP Patent 3609975B12023
  114. MateiS. MateiG.M. DrăghiciE.M. SomăcescuC.V. Candida parapsilosis strain producing biosurfactants, growth and stimulation medium therefor and process for bioaugmentation of expanded pearlite for bioremediation of hydrocarbon-contaminated soils.RO Patent 133486A02020
  115. MateiS. MateiG.M. DrăghiciE.M. SomăcescuC.V. Candida parapsilosis strain producing biosurfactants, growth and stimulation medium therefor and process for bioaugmentation of expanded pearlite for bioremediation of hydrocarbon-contaminated soils.RO Patent 133486B12019
  116. RongjiuS. HuichunS. YingZ. SiqinH. Bacillus for degrading petroleum hydrocarbon and application thereof.CN Patent 111748483A2020
  117. MeloV.M. De AbreuV. NogueiraD. CavalcanteD. De SousaM.P. Genetically modified microorganisms that carry out the heterologous production of modified versions of the surfactant protein lv-ranaspumin-1 (lv-rsn-1), the modified versions of the surfactant protein, the synthetic genes encoding these synthetic genes and the expression vectors containing these synthetic genes.EP4105230A12020
  118. MeloV.M. De AbreuV. NogueiraD. CavalcanteD. De SousaM.P. Genetically modified microrganisms that carry out the heterologous production of modified versions of the surfactant protein lv-ranaspumin-1(lv-rsn-1), the modified versions of said surfactant protein, the synthetic genes encoding said surfactant protein, the expression cassettes containing said synthetic genes, and the expression vectors containing said synthetic genes.US Patent 2023/0029208A12023
  119. BrarS.K. MiriS. DavoodiS.M. Enzyme booster technology for advanced decontamination of petroleum hydrocarbons.US Patent 20230357064A12023
/content/journals/biot/10.2174/0118722083343490241130163344
Loading
/content/journals/biot/10.2174/0118722083343490241130163344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test