Recent Patents on Biotechnology - Volume 1, Issue 2, 2007
Volume 1, Issue 2, 2007
-
-
Bacteriophage and Peptidoglycan Degrading Enzymes with Antimicrobial Applications
More LessPeptidoglycan is the major structural component of bacterial cell walls. In this era of increasingly antibiotic resistant pathogens, peptidoglycan hydrolases that degrade this important cell wall structure have emerged as a potential novel source of new antimicrobials. Included in this class are bacteriocins (lysostaphin), lysozyme, and bacteriophage endolysins. Bacteriophage are viruses that infect and utilize bacteria as their host. They can reside in the bacterial genome as a prophage, or enter the lytic phase, take over the bacterial gene expression machinery, synthesize new phage particles, lyse the host, and release up to hundreds of phage progeny. Lysis occurs during the late phase of the lytic cycle when the phage endolysin and a holin molecule are produced. The holin creates holes in the cells lipid bilayer allowing the phage endolysin (peptidoglycan hydrolase) to escape and degrade the structural portion of the cell wall. These (and other phage encoded proteins) have been shown to inhibit bacterial growth. The ability to inhibit growth or kill bacteria make both the bacteriophage and their gene products a rich source of potential antimicrobials. This review summarizes the recent resurgence of these potential antimicrobials as both diagnostic and therapeutic agents and identifies recent patents that describe these technologies.
-
-
-
Secondary Metabolites from Cordyceps Species and Their Antitumor Activity Studies
Authors: Jian-Hui Xiao and Jian-Jiang ZhongCordyceps, an entomopathogenic mushroom, is a famous traditional Chinese medicinal herb (TCM). This higher fungus contains various known and untapped bioactive metabolites, and is looked at as an important source of natural drugs while simultaneously provides good opportunities for discovering new drugs with immunomodulatory, antitumor, hypoglycemic and hypocholesterolemic functions. Therefore, the Cordyceps spp. has been receiving an increasing interest around the world as an interesting natural drug resource. Various secondary metabolites from Cordyceps fungi were reported to have antitumor activities, and antitumor mechanism of those bioactive compounds possesses multi-target, multi-level and multi-pathway characteristics. Challenges in investigations on Cordyceps fungi include the further elucidation of antitumor molecular mechanism and relationship between structure and function of their secondary metabolites.
-
-
-
Effect of Flavonoids on Human Health: Old Subjects but New Challenges
Authors: Eung-Ryoung Lee, Geun-Ho Kang and Ssang-Goo ChoFlavonoids are highly diversified plant pigments that are present in a wide range of fruits, vegetables, nuts, and beverages. They are regularly consumed in the human diet and have various biological activities including anti-inflammatory, anti-cancer, and antiviral properties. The flavonoids maybe one of the safest non-immunogenic drugs because they are small organic compounds which have been normally absorbed by the human body for long time. During the past decades, the patents on their health effects have inflated very much and the yearly number of the patents is on an increasing trend. This review summarizes the current patents on the health effects of various flavonoids, and suggests the possible expectation that a wide variety of diseases are successful treated with newly-developed specific flavonoids or their derivatives in the near future. In recent patents, specific flavonoids were described to function as antioxidants, enzyme inhibitors, hormones, or immune modulators. Moreover, the recent patents also tried to provide the molecular mechanism of the flavonoid compounds on treating or preventing various human diseases. Recent mechanistic studies in molecular level make it possible that specific flavonoids are identified to have a wide range of biological properties that can contribute to the beneficial effects on human health.
-
-
-
Plasmid DNA Manufacturing Technology
Authors: Aaron E. Carnes and James A. WilliamsToday, plasmid DNA is becoming increasingly important as the next generation of biotechnology products (gene medicines and DNA vaccines) make their way into clinical trials, and eventually into the pharmaceutical marketplace. This review summarizes recent patents and patent applications relating to plasmid manufacturing, in the context of a comprehensive description of the plasmid manufacturing intellectual property landscape. Strategies for plasmid manufacturers to develop or in-license key plasmid manufacturing technologies are described with the endpoint of efficiently producing kg quantities of plasmid DNA of a quality that meets anticipated European and FDA quality specifications for commercial plasmid products.
-
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. MorgunovGluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.
-
-
-
Carbon Nanotube-Based Electrochemical Biosensing Platforms: Fundamentals,Applications, and Future Possibilities
Authors: John H. T. Luong, Keith B. Male and Sabahudin HrapovicBiosensors can be considered as a most plausible and exciting application area for nanobiotechnology. The recent bloom of nanofabrication technology and biofunctionalization methods of carbon nanotubes (CNTs) has stimulated significant research interest to develop CNT-based biosensors for monitoring biorecognition events and biocatalytic processes. The unique properties of CNTs, rolledup sheets of carbon atoms with a diameter less than 1 nm, offer excellent prospects for interfacing biological recognition events with electronic signal transduction. CNT-based biosensors could be developed to sense only a few or even a single molecule of a chemical or biological agent. Both hydrogen peroxide and NADH, two by-products of over 300 oxidoreductases, are efficiently oxidized by CNTmodified electrodes at significantly lower potentials with minimal surface fouling. This appealing feature enables the development of useful biosensors for diversified applications. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the detecting electrode and the redox centers of enzymes to fabricate reagentless biosensors. Electrochemical sensing for DNA can greatly benefit from the use of CNT based platforms since guanine, one of the four bases, can be detected with significantly enhanced sensitivity. CNTs fluoresce, or emit light after absorbing light, in the near infrared region and retain their ability to fluoresce over time. This feature will allow CNT-based sensors to transmit information from inside the body. The combination of micro/nanofabrication and chemical functionalization, particularly nanoelectrode assembly interfaced with biomolecules, is expected to pave the way to fabricate improved biosensors for proteins, chemicals, and pathogens. However, several technical challenges need to be overcome to tightly integrate CNT-based platforms with sampling, fluidic handling, separation, and other detection principles. The biosensing platform must function well in a real-world sample environment where selectivity, sensitivity, detection limits, and ruggedness are the four prerequisites. Carbon nanotube patents look more controversial in electronics but are less problematical in energy, health care, and cosmetics. The use of CNTs in biosensing looks very promising as reflected by some significant patents in this area and other research and developement endeavors.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Gluconic Acid Production
Authors: Savas Anastassiadis and Igor G. Morgunov
-
- More Less