Recent Patents on Biomedical Engineering (Discontinued) - Volume 4, Issue 1, 2011
Volume 4, Issue 1, 2011
-
-
Preparation of Antimicrobial Textiles Using a Sonochemical Method
There is a growing need for hygienic textiles for clothing, wound healing, and medical applications in hospitals and other places where bacteria present a hazard. The reason for this is because some bacterial strains have demonstrated an increasing resistance toward antibiotics. We describe here a patent for preparing antimicrobial fabrics, coated with metal oxide nanoparticles by means of a novel sonochemical method. These antibacterial fabrics are widely used for production of outdoor clothes, under-wear, bed-linen, bandages, etc. The deposition of metal oxides known to possess antimicrobial activity, namely ZnO, MgO and CuO, can significantly extend the applications of textile fabrics and prolong the period of their use. The present patent provides a method for ultrasonic impregnation of textiles with metal oxide nanoparticles thereby producing a textile - metal oxide composite containing homogeneously impregnated metal oxide nanoparticles. By means of the novel sonochemical method, a uniform deposition of metal oxide nanoparticles is achieved simply.
-
-
-
Future of Cardiac Pacemaker -an Update of Biological Pacemaker Patents
Authors: Han-Gang Yu and Yen-Chang LinElectronic pacemaker, since its invention over five decades ago, has saved numerous lives and improved the life quality of patients suffering from cardiac arrhythmias. However, it has its own limitations. Over the past decade, rapid progress in the molecular studies of cardiac ion channels and stem cell biology has led to efforts for creating a biological pacemaker to supplement the widely used electronic pacemaker. This patent review focuses on the development of the ideas for creating a working biological pacemaker. The gene-based and cell-based approaches to meet the requirements of a working biological pacemaker will be reviewed. The important roles of the hyperpolarization-activated cyclic, nucleotide- modulated (HCN) channels, the inward rectifier Kir2.1 potassium channels, and the gap junctions in the biological pacemaker system will be discussed. Finally, the recent development of cell-based strategy and precautions for creation of an effective biological pacemaker superior to the electronic counterpart will also be discussed.
-
-
-
Ability to Adjust in Length and Damping: Missing Features in Middle Ear Implants?
More LessDominating part of the middle ear is the ossicular chain, a pin-jointed assembly of three bones (malleus, incus and stapes). If destroyed by disease or deteriorated by aging, it is fully or partially replaced by an alloplastic implant. A major issue for these devices is the possibility to adapt the implant in length during operation to cope anatomical variations. Several ideas to implement this feature are claimed in patents. Further, two major functionalities provided by the native ossicular chain are rather difficult to implement. This is the ability to adapt in length in-situ to compensate lateral displacement of the eardrum and a damping function to protect the inner ear at exceeding sound pressure levels. Some interesting approaches to implement these functionalities are protected by patents. A brief overview does depict current developments and may give inspiration to find new approaches to fuel the evolution of middle ear implants.
-
-
-
Recent Patents and Trends in Bioprinting
Authors: Timothy Sheehan, Vladimir Mironov, Vladimir Kasyanov and Roger R. MarkwaldBioprinting is the precise automated robotic layer-by-layer additive fabrication of biomaterials. The future of bioprinting technology depends on a number of essential elements, such as the development of innovative bioprinting apparatus and bioprinting methods. The application of innovative bioprinting technologies will have a tremendous impact on the advancement of tissue engineering and regenerative medicine. In this review we survey and report on a range of patents and some journal articles that describe the latest advancements in bioprinting as they relate to tissue engineering. Our analysis of the state of the art revealed that novel patents for bioprinting methods can be categorized into three areas; cell free scaffolds, cellularized scaffolds, and cell and tissue bioprinting. Our analysis also revealed a number of trends including the push to design the first clinical bioprinting apparatus and in vivo bioprinting robots, as well as methods to fabricate vascularized tissue and the first clinically approved cell free implants.
-
-
-
Recent Advances on Body-Heat Powered Medical Devices
Authors: Eda Akman Aydin and Inan GulerImplantable medical devices, wearable medical devices and body sensor networks are rapidly developing research areas of recent years. These devices need self-powered uninterruptible power supplies to accomplish their functions properly. One of the most efficient energy harvesting methods for medical applications is thermoelectric generators. Thermoelectric generators use temperature difference between two points to produce electrical energy. This new technology provides energy autonomy. Thus without affecting the daily life of patients, light weight and esthetic medical device can be established and this would increase patient's quality of life. In this study, autonomous medical devices fully powered by human body-heat are reviewed. Considering the results, body-heat powered thermoelectric generators will be an inseparable part of autonomous medical devices in the near future.
-
-
-
Methods of Cell-Based Bone Regeneration-Mini Review
Authors: Nahum Rosenberg, Michael Soudry and Orit RosenbergThe requirement for bone tissue grafting exists in a wide range of clinical conditions involving surgical reconstruction, following trauma or other pathological conditions, particularly in the limbs, spine and skull. The amount of bone tissue required for grafting and the destination of the graft material affect the origin of the grafting material. There are serious disadvantages in the use of various grafting sources, such as autografts, allografts and inorganic bone substitutes. The possibility of enhanced generation of a sufficient amount of autologous metabolically active bone, with high bone inductive and bone conductive properties, for implantation should resolve the difficulties and complications of the currently used bone grafting techniques. For this purpose, several methods based on bone generating cells implantation on osteoinductive matrices in vivo and in vitro were proposed and submitted for patent registration. Several patents describe the possibility for autologous bone grafting material generation, either in vitro, from bone generating cells cultured on inorganic matrix prior to implantation, or by direct implantation of mesenchymal cells into the bone gap in vivo. Currently there is not enough evidence as to which approach is advantageous for a clinical use. The reason for this uncertainty is the lack of clinical experimental data for both methods.
-
-
-
Recent Patents Review in Three Dimensional Ultrasound Imaging
Authors: Yimin Chen, He Li, Yaowu Zheng, Ming Yuchi, Xuming Zhang and Mingyue DingUltrasound is an inexpensive and widely used imaging modality for the diagnosis and staging of many diseases. In the past several decades, it has benefited from major advances in technology and has become an indispensable imaging modality, due to its flexibility and non-invasive character. In the last decade, research investigators and commercial companies have further advanced ultrasound imaging with the development of 3D ultrasound. Compared with two dimensional ultrasound imaging, it can provide a 3D image of the anatomy directly and localize the image plane much easier. This review focuses on three dimensional ultrasonic medical imaging patents filed in recent years between 2006 and 2010. The patents are classified into three classes: the hardware, software and applications. This paper will attempt to provide an appreciation of the recent advances in 3D ultrasound imaging research while glimpse the future development trend of 3D ultrasound imaging.
-
-
-
Chaos and Gene expression:A Theoretical Approach
Intoduction: The aim of the study was to investigate whether chaotic phenomena (chaos theory) affects the process of Gene Expression. Methods: Modeling the genes X, Y and Z-which encode a certain protein P-a set of three first order differential equations has been developed and studied in phase-space (x,y,z). Results: The elementary equilibrium points in three dimensional phase portrait analysis, include attractors, saddles and repellors. Conclusions: Attractors indicate a stable equilibrium point which attenuates the production of the protein P, while the saddles and particularly the repellors correspond to an unstable dynamic system, which promotes either the production of a P-flaw protein or totally inhibits gene expression. Among other mechanisms-e.g. patents for gene treatment (US2007000515344) and modulation(US20040014083A1)-chaotic phenomena also seem to regulate in a particular way the DNA encoding , that calls for further theoretical and experimental research(e.g. cardiovascular disease, oncology).
-
-
-
Patent Selections
More LessThe patents annotated in this section have been selected from various patent databases. These recent patents are relevant to the articles published in this journal issue, categorized by medical imaging, bioinformatics, image processing, biomaterials, pharmaceutical drugs, bioengineering, medical devices, design, biological devices, biomechanics & diagnostic devices related to biomedical engineering.
-
Most Read This Month
