Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Inflammatory and Anti-Allergy Agents) - Volume 19, Issue 4, 2020
Volume 19, Issue 4, 2020
-
-
Tegaserod for the Treatment of Irritable Bowel Syndrome
Background: Tegaserod (Zelnorm®) is a 5-hydroxytryptamine (serotonin) type 4 receptor agonist for the treatment of hypomotility disorders of the lower gastrointestinal tract associated with the irritable bowel syndrome with constipation (IBS-C). Objective: The authors provide the reader with a better understanding on tegaserod mechanism of action, on its pharmacodynamics and pharmacokinetic properties, on safety and tolerability, with a summary of the key published clinical trials conducted in patients with irritable bowel syndrome (IBS). Its effects on colon inflammation have also been described. Results: Tegaserod was withdrawn in 2007 due to increased risks of cardiovascular adverse effects. The manufacturer denied this, because pre-existing cardiovascular disease or risk factors were attributed to all affected patients. Thus, no causal relationship between tegaserod use and cardiovascular events was clearly shown. A matched case-control study of tegaserod-treated with untreated patients found no association between tegaserod and adverse cardiovascular outcomes. Despite its adverse effects, tegaserod resulted to be effective in treating chronic constipation in adult women aged < 65 years with IBS-C, while the safety and effectiveness of tegaserod in men with IBS-C have not been established. Conclusion: Tegaserod was resubmitted to the Food and Drug Administration in 2018 for use in a low-risk population. Moreover, tegaserod has also been shown to improve symptoms, enhance gastric accommodation and significantly attenuate visceral pain arising from the colon in functional dyspepsia patients. Treatment with tegaserod seems also to exert a protective effect in inflamed colons, reducing the severity of colitis in animal models.
-
-
-
New Anti-inflammatory Triterpene Esters and Glycosides from Alstonia scholaris
Authors: Nighat Sultana, Muhammad S. Qazi and Mustafa KamalBackground: Phytochemical studies on the ethanolic extract of aerial parts of Alstonia scholaris lead to the isolation of two new triterpenoid of the lanostanetype, lanosta 5ene,24-ethyl-3-O-β-D-glucopyranoside (1), lanosta,5ene,24-ethyl-3-O-β-D-glucopyranosideester (2) and new ursane type triterpenoidmethylester, 12-ursene-2,3,18,19-tetrol,28 acetate (nighascholarene) (3), together with seven known triterpenes, betuline, triterpene of the lupane type, alstoprenyol (4), 3β-hydroxy-28-β-acetoxy-5-olea triterpene (5),α-amyrin acetate (6), α-amyrin (7), lupeol acetate (8), 3β-hydroxy-24-nor-urs-4,12,28-triene triterpene (9) and ursolic acid (l0). Methodology: The triterpenoid structures of these colorless compounds were deduced from the 1H and 13C-NMR data, and in particular from the application of two-dimensional 1H, 13C correlation experiments as well as by comparison with reported literature data. Results and Conclusion: This study deals with isolation and structural elucidation of natural new triterpenoidesters and glycosides with anti-inflammatory activity.
-
-
-
In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases
Background: For the first time, the anti-inflammatory drug betamethasone is investigated for its inhibitory activity against lipase. Objective: This work aims to demonstrate the in vitro and in silico inhibitory effect of the anti-inflammatory drug betamethasone on the enzymatic activity of two lipases. Methods: In vitro study using p-nitrophenyllaurate as lipase substrate is used to determine inhibition potency. Molecular Docking is performed using the Autodock Vina for drug molecule and two enzymes Candida rugosa lipase and human pancreatic lipase. Results: Betamethasone represents a moderate inhibition effect with a value of IC50 of 0.36±0.01 mg/ml. Molecular docking allowed us to understand inhibitory – enzyme interactions and to confirm in vitro obtained results. Conclusion: These experiments showed that betamethasone can be used in the treatment of diseases related to lipase activity.
-
-
-
Synthesis and Biological Activity of a Bis-steroid-methanocyclobuta-naphthalene-dione Derivative against Ischemia/Reperfusion Injury via Calcium Channel Activation
Background: There is some experimental data on the effect exerted by some steroid derivatives against ischemia/reperfusion injury; however, the molecular mechanism is very confusing, perhaps this phenomenon could be due to the protocols used and/or differences in the chemical structure of each one of the steroid derivatives. Objectives: The aim of this study was to synthesize a new bis-steroid-methanocyclobutanaphthalene- dione derivative using some tools chemical. Methodology: The biological activity exerted by the bis-steroid-methanocyclobutanaphthalene- dione derivative against ischemia/reperfusion injury was evaluated in an isolated heart model using noradrenaline, milrinone, dobutamine, levosimendan, and Bay-K- 8644 as controls. In addition, other alternative experiments were carried out to evaluate the biological activity induced by the bis-steroid-methanocyclobuta-naphthalene-dione derivative against left ventricular pressure in the absence or presence of nifedipine. Results: The results showed that 1) the bis-steroid-methanocyclobuta-naphthalene-dione derivative significantly decreases the ischemia-reperfusion injury translated as a decrease in the the infarct area in a similar manner to levosimendan drug; 2) both bis-steroidmethanocyclobuta- naphthalene-dione and Bay-K-8644 increase the left ventricular pressure and 3) the biological activity exerted by bis-steroid-methanocyclobuta-naphthalenedione derivative against left ventricular pressure is inhibited by nifedipine. Conclusion: In conclusion, the bis-steroid-methanocyclobuta-naphthalene-dione derivative decreases the area of infarction and increases left ventricle pressure via calcium channels activation; this phenomenon could constitute a new therapy for ischemia/reperfusion injury.
-
-
-
Mitigation of Radiation-induced Gastrointestinal System Injury using Resveratrol or Alpha-lipoic Acid: A Pilot Histopathological Study
Aim: In this study, we aimed to determine possible mitigation of radiationinduced toxicities in the duodenum, jejunum and colon using post-exposure treatment with resveratrol and alpha-lipoic acid. Background: After the bone marrow, gastrointestinal system toxicity is the second critical cause of death following whole-body exposure to radiation. Its side effects reduce the quality of life of patients who have undergone radiotherapy. Resveratrol has an antioxidant effect and stimulates DNA damage responses (DDRs). Alpha-lipoic acid neutralizes free radicals via the recycling of ascorbic acid and alpha-tocopherol. Objective: This study is a pilot investigation of the mitigation of enteritis using resveratrol and alpha-lipoic acid following histopathological study. Methods: 60 male mice were randomly assigned to six groups; control, resveratrol treatment, alpha-lipoic acid treatment, whole-body irradiation, irradiation plus resveratrol, and irradiation plus alpha-lipoic acid. The mice were irradiated with a single dose of 7 Gy from a cobalt-60 gamma-ray source. Treatment with resveratrol or alpha-lipoic acid started 24 h after irradiation and continued for 4 weeks. All mice were sacrificed after 30 days for histopathological evaluation of radiation-induced toxicities in the duodenum, jejunum and colon. Results and Discussion: Exposure to radiation caused mild to severe damages to vessels, goblet cells and villous. It also led to significant infiltration of macrophages and leukocytes, especially in the colon. Both resveratrol and alpha-lipoic acid were able to mitigate morphological changes. However, they could not mitigate vascular injury. Conclusion: Resveratrol and alpha-lipoic acid could mitigate radiation-induced injuries in the small and large intestine. A comparison between these agents showed that resveratrol may be a more effective mitigator compared to alpha-lipoic acid.
-
-
-
Pro- and Anti-Inflammatory Cytokine Expression Levels in Macrophages; An Approach to Develop Indazolpyridin-methanones as Novel Inflammation Medication
Background: Macrophages play a serious part in the instigation, upkeep, and resolution of inflammation. They are activated or deactivated during inflammation progression. Activation signals include cytokines (IF-γ, granulocyte-monocyte colonystimulating factor (GM-CSF), and TNF-α), extracellular matrix proteins, and other chemical mediators. Activated macrophages are deactivated by anti-inflammatory cytokines (IL- 10 and TGF-β (transforming growth factor-beta) and cytokine antagonists that are mainly produced by macrophages. Based on this, the present study aimed to develop novel (E)- Benzylidene-indazolpyridin methanones (Cpd-1-10) as effective anti-inflammatory agents by analyzing pro- and anti-inflammatory cytokine levels in macrophages. Objectives: To determine the anti-inflammatory effect of indazolpyridin-methanones by examining pro- and anti-inflammatory interleukin levels in J77A.1 macrophages. Methods: Expression of cytokines such as TNF-α, IL-1β, IL-6 and IL-10 serum levels measured by ELISA method. Anti-cancer and cytotoxicity studies were carried out by MTT assay. COX-2 seems to be associated with cancers and atypical developments in the duodenal tract. So, a competitive ELISA based COX-2 inhibition assay was done. To validate the inhibitory potentials and to get more insight into the interaction of COX-2 with Cpd1-10, molecular docking was performed. Results: Briefly, the COX-2 inhibitory relative activity was found to be in between the range of 80-92% (Diclofenac showed 84%, IC50 0.95 μM). Conclusion: Cytotoxicity effect of the compounds against breast cancer cell lines found excellent and an extended anticancer study ensured that these compounds are also alternative therapeutic agents against breast cancer. Among all the tested cancer cell lines, the anti- cancer effect on breast cancer was exceptional for the most active compounds Cpd5 and Cpd9.
-
-
-
Quercetin Decreased Alveolar Bone Loss and Apoptosis in Experimentally Induced Periodontitis Model in Wistar Rats
Authors: Mehmet M. Taskan and Fikret GevrekBackground: Quercetin is a flavonoid which has potent anti-inflammatory, antibacterial, and antioxidant effect. Purpose of this study was to evaluate effects of quercetin on alveolar bone loss and histopathological changes in ligature-induced periodontitis in rats. Methods: Wistar rats were divided into four experimental groups: non-ligated control (C, n=8) group; periodontitis (P, n=8) group; ligature and low dose quercetin group (75 mg/kg/day quercetin, Q75 group, n=8); ligature and high dose quercetin group (150 mg/kg/day quercetin, Q150 group, n=8). Silk ligatures were placed at gingival margin of lower first molars of mandibular right quadrant. Study duration was 15 days, and animals were sacrificed end of this period. Changes in alveolar bone levels were clinically measured and tissues were immunohistochemically examined, matrix metalloproteinase 8 (MMP 8), inducible nitric oxide synthase (iNOS), tissue inhibitor of metalloproteinase 1 (TIMP 1), Cysteine-aspartic proteases 3 (Caspase 3), and tartrate-resistant acid phosphatase (TRAP) positive osteoclast cells, osteoblast, and neutrophil counts were also determined. Results and Discussion: Alveolar bone loss was highest in P group, and differences among P, Q75, and Q150 groups were significant. Both doses of quercetin decreased TRAP+ osteoclast cells and increased osteoblast cells. Inflammation in P group was also higher than those of C, Q75, and Q150 groups indicating anti-inflammatory effect of quercetin. iNOS, MMP-8, and caspase-3 levels were highest, and TIMP-1 expression was lowest in P group; differences were statistically significant. Conclusion: Within limits of this study, it can be suggested that quercetin administration may reduce alveolar bone loss by increasing osteoblastic activity, decreasing osteoclastic activity, apoptosis, and inflammation in an experimental model of periodontitis.
-
Volumes & issues
-
Volume 24 (2025)
-
Volume 23 (2024)
-
Volume 22 (2023)
-
Volume 21 (2022)
-
Volume 20 (2021)
-
Volume 19 (2020)
-
Volume 18 (2019)
-
Volume 17 (2018)
-
Volume 16 (2017)
-
Volume 15 (2016)
-
Volume 14 (2015)
-
Volume 13 (2014)
-
Volume 12 (2013)
-
Volume 11 (2012)
-
Volume 10 (2011)
-
Volume 9 (2010)
-
Volume 8 (2009)
-
Volume 7 (2008)
-
Volume 6 (2007)
-
Volume 5 (2006)
Most Read This Month
