Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Carbon Dots (CDs) are innovative nanoscale carbon-based materials recognized for their exceptional optical properties, biocompatibility, and minimal toxicity. These fluorescent nanoparticles, generally smaller than 10 nm, exhibit strong photoluminescence and absorption capabilities, which make them valuable for diverse applications in biomedicine, sensing, catalysis, and antibacterial technologies. Since their discovery in carbon soot in 2004, CDs have attracted attention for their environmental friendliness and versatile preparation methods, such as top-down (., laser ablation, arc discharge) and bottom-up (., hydrothermal treatment, microwave irradiation) approaches. Functionalized with various surface groups, CDs offer excellent solubility and customizable properties for specific applications. One of the most promising uses of CDs is as antibacterial agents, particularly against multidrug-resistant pathogens in the fight against bacterial infections. Their antibacterial mechanism involves generating Reactive Oxygen Species (ROS), which cause oxidative stress in bacterial cells, ultimately leading to cell death. Studies demonstrate the effective antibacterial action of CDs against bacteria such as and , attributed to ROS generation and membrane-penetrating effects. Despite challenges like synthesis consistency and potential toxicity, advancements in eco-friendly production and combination with other antimicrobial agents present exciting possibilities. CDs emerge as sustainable alternatives to traditional antibiotics, offering a valuable tool for advancing infection control in nanotechnology and global health contexts.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525366977250120074030
2025-02-17
2025-10-13
Loading full text...

Full text loading...

References

  1. QureshiZ.A. DabashH. PonnammaD. AbbasM.K.G. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond.Heliyon20241011e3163410.1016/j.heliyon.2024.e31634 38832274
    [Google Scholar]
  2. KumaraB.N. KalimuthuP. PrasadK.S. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review.Anal. Chim. Acta2023126834143010.1016/j.aca.2023.341430 37268342
    [Google Scholar]
  3. MalarC.G. MuthulingamS. MurugesanM. SrinivasanG. SankarR. A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry.J. Therm. Anal. Calorim.2023148250551610.1007/s10973‑022‑11687‑9
    [Google Scholar]
  4. OzyurtD. KobaisiM.A. HockingR.K. FoxB. Properties, synthesis, and applications of carbon dots: A review.Carbon Trends20231210027610.1016/j.cartre.2023.100276
    [Google Scholar]
  5. SunL. ZhaoY. PengH. ZhouJ. ZhangQ. YanJ. LiuY. GuoS. WuX. LiB. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: Recent advances.J. Nanobiotechnology202422121010.1186/s12951‑024‑02479‑4 38671474
    [Google Scholar]
  6. PathakR. PunethaV.D. BhattS. PunethaM. Multifunctional role of carbon dot-based polymer nanocomposites in biomedical applications: A review.J. Mater. Sci.202358156419644310.1007/s10853‑023‑08408‑4 37065681
    [Google Scholar]
  7. BhattacharyaT. PreetamS. MukherjeeS. KarS. RoyD.S. SinghH. GhoseA. DasT. MohapatraG. Anticancer activity of quantum size carbon dots: Opportunities and challenges.Discov. Nano202419112210.1186/s11671‑024‑04069‑7 39103694
    [Google Scholar]
  8. SoniH. BhattuM. SdP. KaurM. VermaM. SinghJ. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications.Environ. Res.2024251Pt 111856010.1016/j.envres.2024.118560 38447603
    [Google Scholar]
  9. KaurI. BatraV. Kumar Reddy BogireddyN. LandaT.S.D. AgarwalV. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots.Food Chem.202340613502910.1016/j.foodchem.2022.135029 36463597
    [Google Scholar]
  10. BudimirM.D. PrekodravacJ.R. Photocatalytic properties of zero-dimensional carbon–based nanomaterials: Application as catalysts/adsorbents in water treatment. Zero-Dimensional Carbon Nanomaterials.New YorkElsevier202429135510.1016/B978‑0‑323‑99535‑1.00011‑1
    [Google Scholar]
  11. SenguptaS. PalS. PalA. MaityS. SarkarK. DasM. A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs).Inorg. Chim. Acta202355712167710.1016/j.ica.2023.121677
    [Google Scholar]
  12. KaramiM.H. AbdoussM. RahdarA. PandeyS. Graphene quantum dots: Background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: An updated review.Inorg. Chem. Commun.202416111203210.1016/j.inoche.2024.112032
    [Google Scholar]
  13. LuoJ. WangS. DingY. ShenJ. XuC. Controlled synthesis of chiral carbon dots with high asymmetric catalytic properties and reproducibility for direct aldol reactions: The impact of functional groups of carbon sources.Carbon202422811939310.1016/j.carbon.2024.119393
    [Google Scholar]
  14. MmelesiO.K. MguniL.L. LiF. NkosiB. LiuX. Recent development in fluorescent carbon quantum dots-based photocatalysts for water and energy applications.Mater. Sci. Semicond. Process.202418110866110.1016/j.mssp.2024.108661
    [Google Scholar]
  15. DeviA.J.S. AnjuM.S. LekhaG.M. AparnaR.S. GeorgeS. Luminescent carbon dots versus quantum dots and gold nanoclusters as sensors.Nanoscale Horiz.20249101683170210.1039/D4NH00107A 39037443
    [Google Scholar]
  16. YangZ. XuT. LiH. SheM. ChenJ. WangZ. ZhangS. LiJ. Zero-dimensional carbon nanomaterials for fluorescent sensing and imaging.Chem. Rev.202312318110471113610.1021/acs.chemrev.3c00186 37677071
    [Google Scholar]
  17. BressiV. BaluA.M. IannazzoD. EsproC. Recent advances in the synthesis of carbon dots from renewable biomass by high-efficient hydrothermal and microwave green approaches.Curr. Opin. Green Sustain. Chem.20234010074210.1016/j.cogsc.2022.100742
    [Google Scholar]
  18. LiuH. ZhongX. PanQ. ZhangY. DengW. ZouG. HouH. JiX. A review of carbon dots in synthesis strategy.Coord. Chem. Rev.202449821546810.1016/j.ccr.2023.215468
    [Google Scholar]
  19. NagarajanD. GangadharanD. VenkatanarasimhanS. Synthetic strategies toward developing carbon dots via top-down approach. Carbon Dots in Analytical Chemistry.New YorkElsevier202311310.1016/B978‑0‑323‑98350‑1.00016‑5
    [Google Scholar]
  20. LeeB. StokesG.A. ValimukhametovaA. NguyenS. RodriguezG.R. BhalooA. CofferJ. NaumovA.V. Automated approach to in vitro image-guided photothermal therapy with top-down and bottom-up-synthesized graphene quantum dots.Nanomaterials202313580510.3390/nano13050805 36903683
    [Google Scholar]
  21. ZhangY. LuS. Lasing of carbon dots: Chemical design, mechanisms, and bright future.Chem202410113417110.1016/j.chempr.2023.09.020
    [Google Scholar]
  22. AslamR. Synthesis methodology of carbon dots: Modern trends and enhancements.Nano-hybrid Smart Coatings: Advancements in Industrial Efficiency and Corrosion Resistance202414699512010.1021/bk‑2024‑1469.ch005
    [Google Scholar]
  23. KaczmarekA. HoffmanJ. MorgielJ. MościckiT. StobińskiL. SzymańskiZ. MałolepszyA. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine.Materials202114472910.3390/ma14040729 33557309
    [Google Scholar]
  24. TorrisiL. TorrisiA. CutroneoM. Luminescence enhancement of carbon dots synthesized by intense CW laser at 450 nm irradiating biocompatible solutions.Fuller. Nanotub. Carbon Nanostruct.2024111210.1080/1536383X.2024.2391548
    [Google Scholar]
  25. LambaR. YuktaY. MondalJ. KumarR. PaniB. SinghB. Carbon dots: Synthesis, characterizations, and recent advancements in biomedical, optoelectronics, sensing, and catalysis applications.ACS Appl. Bio Mater.2024742086212710.1021/acsabm.4c00004 38512809
    [Google Scholar]
  26. SherF. ZianiI. SmithM. ChugreevaG. HashimzadaS.Z. ProlaL.D.T. SulejmanovićJ. SherE.K. Carbon quantum dots conjugated with metal hybrid nanoparticles as advanced electrocatalyst for energy applications – A review.Coord. Chem. Rev.202450021549910.1016/j.ccr.2023.215499
    [Google Scholar]
  27. MujicaC.F.J. HernándezG.L. LópezC.S. LópezC.M. LópezC.M.A. ContrerasR.D. RodríguezP.A. CaravacaP.J.P. RodríguezP.A. GonzalezD.J.G. TabaresH.L. Arias de FuentesO. ProkhorovE. FigueredoT.N. RegueraE. GarcíaD.L.F. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation.J. Appl. Phys.20211291616330110.1063/5.0040322
    [Google Scholar]
  28. WangC. LiD. LuZ.S. SongM. XiaW. Synthesis of carbon nanoparticles in a non-thermal plasma process.Chem. Eng. Sci.202022711592110.1016/j.ces.2020.115921
    [Google Scholar]
  29. RoccoD. MoldoveanuV.G. FerociM. BortolamiM. VeticaF. Electrochemical synthesis of carbon quantum dots.ChemElectroChem2023103e20220110410.1002/celc.202201104 37502311
    [Google Scholar]
  30. AzazyE.M. OsmanA.I. NasrM. IbrahimY. HashimiA.N. SaadA.K. GhoutiA.M.A. ShiblM.F. MuhtasebA.A.H. RooneyD.W. ShafieE.A.S. The interface of machine learning and carbon quantum dots: From coordinated innovative synthesis to practical application in water control and electrochemistry.Coord. Chem. Rev.202451721597610.1016/j.ccr.2024.215976
    [Google Scholar]
  31. ZhangL. TangW. YangL. WangZ. JiangY. WangX. SuR. XiaoF. ChenL. HeP. ZengY. ZhouY. WanY. TangB. Polytoluidine blue-coated multiwalled carbon nanotubes: In-situ polymerization based hybrid nanostructure for high performance asymmetric supercapacitors.Mater. Today Chem.20243910215010.1016/j.mtchem.2024.102150
    [Google Scholar]
  32. WangX. QinH. SunY. HanX. LiW. ZhangM. HouY. HunX. CRISPR/Cas12a coupled with In2O3/multiwalled carbon nanotube/PTCDA-EDA-DAP modified electrode self-powered photoelectrochemical assay for EBV-DNA.Sens. Actuators B Chem.202441813627410.1016/j.snb.2024.136274
    [Google Scholar]
  33. SaleemM. NazM.Y. ShukrullahS. ShujahM.A. AkhtarM. UllahS. AliS. One-pot sonochemical preparation of carbon dots, influence of process parameters and potential applications: A review.Carb. Lett.2022321395510.1007/s42823‑021‑00273‑y
    [Google Scholar]
  34. DaveP.N. ChaturvediS. Carbon Dots: Synthesis, Photocatalyst, and Future Perspective;Carbon Dots: Recent Developments and Future Perspectives: New York20241465638010.1021/bk‑2024‑1465.ch003
    [Google Scholar]
  35. ZaibM. ArshadA. KhalidS. ShahzadiT. One pot ultrasonic plant mediated green synthesis of carbon dots and their application invisible light induced dye photocatalytic studies: A kinetic approach.Int. J. Environ. Anal. Chem.2023103175063508110.1080/03067319.2021.1934463
    [Google Scholar]
  36. ChaiY. FengY. ZhangK. LiJ. Preparation of fluorescent carbon dots composites and their potential applications in biomedicine and drug delivery—a review.Pharmaceutics20221411248210.3390/pharmaceutics14112482 36432673
    [Google Scholar]
  37. MondayN.Y. AbdullahJ. YusofN.A. RashidA.S. ShuebR.H. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor.Appl. Sci.2021114163010.3390/app11041630
    [Google Scholar]
  38. LiS. HuJ. AryeeA.A. SunY. LiZ. Three birds, one stone: Disinfecting and turning waste medical masks into valuable carbon dots for sodium hydrosulfite and Fe3+ detection enabled by a simple hydrothermal treatment.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329612265910.1016/j.saa.2023.122659 36989697
    [Google Scholar]
  39. İzgıM.S. OnatE. ŞahınÖ. SakaC. Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment.Int. J. Hydrogen Energy20245118019210.1016/j.ijhydene.2023.08.119
    [Google Scholar]
  40. BhattacharyaT. Advances and prospects for biochar utilization in food processing and packaging applications. Sustainable Materials and TechnologiesElsevierNew York202439e0083110.1016/j.susmat.2024.e00831
    [Google Scholar]
  41. NugrohoD. BenchawattananonR. JanshongsawangJ. PimsinN. PorrawatkulP. PimsenR. NuengmatchaP. NueangmatchaP. ChanthaiS. Ultra-trace analysis of chromium ions (Cr3+/Cr6+) in water sample using selective fluorescence turn-off sensor with natural carbon dots mixed graphene quantum dots nanohybrid composite synthesis by pyrolysis.Arab. J. Chem.202417110544310.1016/j.arabjc.2023.105443
    [Google Scholar]
  42. ChenL. WangC.F. LiuC. ChenS. Facile access to fabricate carbon dots and perspective of large‐scale applications.Small20231931220667110.1002/smll.202206671 36479832
    [Google Scholar]
  43. GłowniakS. SzczęśniakB. ChomaJ. JaroniecM. Advances in microwave synthesis of nanoporous materials.Adv. Mater.20213348210347710.1002/adma.202103477 34580939
    [Google Scholar]
  44. SunerS.S. Nitrogen-doped arginine carbon dots and its metal nanoparticle composites as antibacterial agent.C2020635810.3390/c6030058
    [Google Scholar]
  45. NishshankageK. FernandezA.B. PallewattaS. BuddhinieP.K.C. VithanageM. Current trends in antimicrobial activities of carbon nanostructures: Potentiality and status of nanobiochar in comparison to carbon dots.Biochar202461210.1007/s42773‑023‑00282‑2
    [Google Scholar]
  46. KhanB. ZhangJ. DurraniS. WangH. NawazA. DurraniF. YeY. WuF.G. LinF. Carbon-dots-mediated improvement of antimicrobial activity of natural products.ACS Appl. Mater. Interfaces20241636472574726910.1021/acsami.4c09689 39216005
    [Google Scholar]
  47. VargheseM. BalachandranM. Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review.J. Environ. Chem. Eng.20219610682110.1016/j.jece.2021.106821
    [Google Scholar]
  48. BeraS. Photodynamic and Light-Response Nanomaterials Against Multidrug-Resistant Bacteria. Nanotechnology Based Strategies for Combating Antimicrobial Resistance.SingaporeSpringer Nature Singapore202435139110.1007/978‑981‑97‑2023‑1_14
    [Google Scholar]
  49. MaG. LiX. CaiJ. WangX. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics.Food Chem.202445113938510.1016/j.foodchem.2024.139385 38663242
    [Google Scholar]
  50. ZhaoW.B. LiuK.K. WangY. LiF.K. GuoR. SongS.Y. ShanC.X. Antibacterial carbon dots: Mechanisms, design, and applications.Adv. Healthc. Mater.20231223230032410.1002/adhm.202300324 37178318
    [Google Scholar]
  51. DongC. WangY. ChenT. RenW. GaoC. MaX. GaoX. WuA. Carbon dots in the pathological microenvironment: Ros producers or scavengers?Adv. Healthc. Mater.20241329240210810.1002/adhm.202402108 39036817
    [Google Scholar]
  52. ZhangY. JiaQ. NanF. WangJ. LiangK. LiJ. XueX. RenH. LiuW. GeJ. WangP. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy.Biomaterials202329312195310.1016/j.biomaterials.2022.121953 36521428
    [Google Scholar]
  53. SenA. ImlayJ.A. How microbes defend themselves from incoming hydrogen peroxide.Front. Immunol.20211266734310.3389/fimmu.2021.667343 33995399
    [Google Scholar]
  54. KhanA. Carbon Nanodots: A. Carbon Nanostructures in Biomedical Applications.ChamSpringer International Publishing202314516710.1007/978‑3‑031‑28263‑8_6
    [Google Scholar]
  55. PengY. XiaoX. RenB. ZhangZ. LuoJ. YangX. ZhuG. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation.J. Hazard. Mater.202446813374210.1016/j.jhazmat.2024.133742 38367436
    [Google Scholar]
  56. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  57. ZhangJ. LuX. TangD. WuS. HouX. LiuJ. WuP. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes.ACS Appl. Mater. Interfaces20181047408084081410.1021/acsami.8b15318 30387982
    [Google Scholar]
  58. RisticB.Z. MilenkovicM.M. DakicI.R. MarkovicT.B.M. MilosavljevicM.S. BudimirM.D. PaunovicV.G. DramicaninM.D. MarkovicZ.M. TrajkovicV.S. Photodynamic antibacterial effect of graphene quantum dots.Biomaterials201435154428443510.1016/j.biomaterials.2014.02.014 24612819
    [Google Scholar]
  59. DeviP. ThakurA. BhardwajS.K. SainiS. RajputP. KumarP. Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots.J. Mater. Sci. Mater. Electron.20182920172541726110.1007/s10854‑018‑9819‑0
    [Google Scholar]
  60. KavithaT. KumarS. Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots.Sci. Rep.2018811626910.1038/s41598‑018‑34349‑z 30389974
    [Google Scholar]
  61. BoobalanT. SethupathiM. SengottuvelanN. KumarP. BalajiP. GulyásB. PadmanabhanP. SelvanS.T. ArunA. Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents.ACS Appl. Nano Mater.2020365910591910.1021/acsanm.0c01058
    [Google Scholar]
  62. SaravananA. MaruthapandiM. DasP. LuongJ.H.T. GedankenA. Green synthesis of multifunctional carbon dots with antibacterial activities.Nanomaterials202111236910.3390/nano11020369 33540607
    [Google Scholar]
  63. ShahshahanipourM. RezaeiB. EnsafiA.A. EtemadifarZ. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug.Mater. Sci. Eng. C20199882683310.1016/j.msec.2019.01.041 30813088
    [Google Scholar]
  64. SurendranP. LakshmananA. PriyaS.S. BalakrishnanK. RameshkumarP. KannanK. GeethaP. HegdeT.A. VinithaG. Bioinspired fluorescence carbon quantum dots extracted from natural honey: Efficient material for photonic and antibacterial applications. Nano-Struct.Nano-Obje.20202410058910.1016/j.nanoso.2020.100589
    [Google Scholar]
  65. VictoriaF. ManioudakisJ. ZaroubiL. FindlayB. NaccacheR. Tuning residual chirality in carbon dots with anti-microbial properties.RSC Advances20201053322023221010.1039/D0RA05208F 35518167
    [Google Scholar]
  66. MezianiM.J. DongX. ZhuL. JonesL.P. LeCroyG.E. YangF. WangS. WangP. ZhaoY. YangL. TrippR.A. SunY.P. Visible-light-activated bactericidal functions of carbon “Quantum” dots.ACS Appl. Mater. Interfaces2016817107611076610.1021/acsami.6b01765 27064729
    [Google Scholar]
  67. LiuW. WuB. SunW. LiuW. GuH. DuJ. FanJ. PengX. Near-infrared II fluorescent carbon dots for differential imaging of drug-resistant bacteria and dynamic monitoring of immune system defense against bacterial infection in vivo.Chem. Eng. J.202347114453010.1016/j.cej.2023.144530
    [Google Scholar]
  68. YuM. LiP. HuangR. XuC. ZhangS. WangY. GongX. XingX. Antibacterial and antibiofilm mechanisms of carbon dots: A review.J. Mater. Chem. B Mater. Biol. Med.202311473475410.1039/D2TB01977A 36602120
    [Google Scholar]
  69. LinL. FangM. LiuW. ZhengM. LinR. Recent advances and perspectives of functionalized carbon dots in bacteria sensing.Mikrochim. Acta2023190936310.1007/s00604‑023‑05938‑1 37610450
    [Google Scholar]
  70. KuznietsovaH. GéloënA. DziubenkoN. ZaderkoA. AlekseevS. LysenkoV. SkryshevskyV. In vitro and in vivo toxicity of carbon dots with different chemical compositions.Discov. Nano202318111110.1186/s11671‑023‑03891‑9 37682347
    [Google Scholar]
  71. SharmaS. KumarR. KumarK. ThakurN. Sustainable applications of biowaste-derived carbon dots in eco-friendly technological advancements: A review.Mater. Sci. Eng. B202430511741410.1016/j.mseb.2024.117414
    [Google Scholar]
  72. QiJ. ZhangP. ZhangT. ZhangR. ZhangQ. WangJ. ZongM. GongY. LiuX. WuX. LiB. Metal-doped carbon dots for biomedical applications: From design to implementation.Heliyon20241011e3213310.1016/j.heliyon.2024.e32133 38868052
    [Google Scholar]
  73. RaniM. Anoushka BandegharaeiH.A. ShankerU. Pesticides removal and their detection in real samples using green synthesized nanocomposites of biogenic quantum dots and metal oxides: A comprehensive review on recent updates.J. Mol. Liq.202441312592110.1016/j.molliq.2024.125921
    [Google Scholar]
/content/journals/aia/10.2174/0122113525366977250120074030
Loading
/content/journals/aia/10.2174/0122113525366977250120074030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test