Skip to content
2000
image of In Situ Gelling Systems for the Treatment of Ocular Pain and Inflammation: A Review

Abstract

Ocular drug delivery presents significant challenges due to the intricate anatomy and protective barriers of the eye, which limit drug penetration and retention. Addressing common issues like ocular pain and inflammation, conditions that substantially impact the quality of life, requires innovative approaches. This review focuses on gel systems as a promising solution for ocular drug delivery, specifically for managing pain and inflammation. gels, which transition from liquid to gel upon contact with the eye, offer distinct advantages over traditional formulations, such as prolonged residence time, sustained drug release, enhanced drug retention, and minimized systemic side effects. These benefits contribute to enhanced therapeutic efficacy and increased patient comfort. It also examines various polymers and gelling mechanisms used in gels, including temperature-sensitive, pH-sensitive, and ion-activated polymers. While there is significant promise in the development of gel systems, several challenges must be addressed, including the optimization of viscosity, the assurance of biocompatibility, and the precise adjustment of drug release profiles. Future research is geared toward integrating novel polymers, designing stimuli-responsive systems, and advancing targeted drug delivery strategies. These innovations aim to further improve the effectiveness and patient compliance of gel systems for ocular applications, offering a viable alternative for sustained and comfortable management of ocular pain and inflammation.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525361929250127060448
2025-02-26
2025-03-25
Loading full text...

Full text loading...

References

  1. Lin K.T. Wang A. Nguyen A.B. Iyer J. Tran S.D. Recent advances in hydrogels: Ophthalmic applications in cell delivery, vitreous substitutes, and ocular adhesives. Biomedicines 2021 9 9 1203 10.3390/biomedicines9091203 34572389
    [Google Scholar]
  2. Dua H.S. Ting D.S.J. Al Saadi A. Said D.G. Chemical eye injury: Pathophysiology, assessment and management. Eye (Lond.) 2020 34 11 2001 2019 10.1038/s41433‑020‑1026‑6 32572184
    [Google Scholar]
  3. Gabai A. Zeppieri M. Finocchio L. Salati C. Innovative strategies for drug delivery to the ocular posterior segment. Pharmaceutics 2023 15 7 1862 10.3390/pharmaceutics15071862 37514050
    [Google Scholar]
  4. González-Cela-Casamayor M.A. López-Cano J.J. Bravo-Osuna I. Andrés-Guerrero V. Vicario-de-la-Torre M. Guzmán-Navarro M. Benítez-del-Castillo J.M. Herrero-Vanrell R. Molina-Martínez I.T. Novel osmoprotective DOPC-DMPC liposomes loaded with antihypertensive drugs as potential strategy for glaucoma treatment. Pharmaceutics 2022 14 7 1405 10.3390/pharmaceutics14071405 35890300
    [Google Scholar]
  5. Dammak A. Pastrana C. Martin-Gil A. Carpena-Torres C. Peral Cerda A. Simovart M. Alarma P. Huete-Toral F. Carracedo G. Oxidative stress in the anterior ocular diseases: Diagnostic and treatment. Biomedicines 2023 11 2 292 10.3390/biomedicines11020292 36830827
    [Google Scholar]
  6. Pflugfelder S.C. de Paiva C.S. The pathophysiology of dry eye disease. Ophthalmology 2017 124 11 S4 S13 10.1016/j.ophtha.2017.07.010 29055361
    [Google Scholar]
  7. Paolini M.S. Fenton O.S. Bhattacharya C. Andresen J.L. Langer R. Polymers for extended-release administration. Biomed. Microdevices 2019 21 2 45 10.1007/s10544‑019‑0386‑9 30963297
    [Google Scholar]
  8. Campos P.M. Petrilli R. Lopez R.F.V. The prominence of the dosage form design to treat ocular diseases. Int. J. Pharm. 2020 586 119577 10.1016/j.ijpharm.2020.119577 32622806
    [Google Scholar]
  9. Al-Kinani A.A. Zidan G. Elsaid N. Seyfoddin A. Alani A.W.G. Alany R.G. Ophthalmic gels: Past, present and future. Adv. Drug Deliv. Rev. 2018 126 113 126 10.1016/j.addr.2017.12.017 29288733
    [Google Scholar]
  10. Cassano R. Di Gioia M.L. Trombino S. Gel-based materials for ophthalmic drug delivery. Gels 2021 7 3 130 10.3390/gels7030130 34563016
    [Google Scholar]
  11. Wu Y. Liu Y. Li X. Kebebe D. Zhang B. Ren J. Lu J. Li J. Du S. Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharm. Sci. 2019 14 1 1 15 10.1016/j.ajps.2018.04.008 32104434
    [Google Scholar]
  12. Kaur H. loyee S. Garg R. Formulation and evaluation of in-situ ocular gel of gatifloxacin. Int. J. Pharma Res. Health Sci. 2016 4 5 1365 1370 10.21276/ijprhs.2016.05.05
    [Google Scholar]
  13. Vigani B. Rossi S. Sandri G. Bonferoni M.C. Caramella C.M. Ferrari F. Recent advances in the development of In-Situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020 12 9 859 10.3390/pharmaceutics12090859 32927595
    [Google Scholar]
  14. Ma W.D. Xu H. Wang C. Nie S.F. Pan W.S. Pluronic F127-g-poly(acrylic acid) copolymers as In-Situ gelling vehicle for ophthalmic drug delivery system. Int. J. Pharm. 2008 350 1-2 247 256 10.1016/j.ijpharm.2007.09.005 17961940
    [Google Scholar]
  15. Karavasili C. Fatouros D.G. Smart materials: In-Situ gel-forming systems for nasal delivery. Drug Discov. Today 2016 21 1 157 166 10.1016/j.drudis.2015.10.016 26563428
    [Google Scholar]
  16. Sivadasan D. Sultan M.H. Alqahtani S.S. Javed S. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines 2023 11 4 1114 10.3390/biomedicines11041114 37189732
    [Google Scholar]
  17. Urtti A. Kinetic aspects in the design of prolonged action ocular drug delivery systems Advances in Pharmaceutical Sciences. Academic Press 1995 63 92 10.1016/S0065‑3136(06)80004‑X
    [Google Scholar]
  18. El Sayed M.M. Production of Polymer hydrogel composites and their applications. J. Polym. Environ. 2023 31 7 2855 2879 10.1007/s10924‑023‑02796‑z
    [Google Scholar]
  19. Kurniawansyah I.S. Rusdiana T. Sopyan I. Desy Arya I.F. Wahab H.A. Nurzanah D. Comparative study of In-Situ gel formulation based on the physico-chemical aspect: Systematic review. Gels 2023 9 8 645 10.3390/gels9080645 37623100
    [Google Scholar]
  20. Pandey M. Choudhury H. binti Abd Aziz A. Bhattamisra S.K. Gorain B. Su J.S.T. Tan C.L. Chin W.Y. Yip K.Y. Potential of stimuli-responsive In-Situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers 2021 13 8 1340 10.3390/polym13081340 33923900
    [Google Scholar]
  21. Nayak A.K. Bera H. In-Situ polysaccharide-based gels for topical drug delivery applications. Polysaccharide Carriers for Drug Delivery. Elsevier 2019 615 638 10.1016/B978‑0‑08‑102553‑6.00021‑0
    [Google Scholar]
  22. Kouchak M. In-Situ gelling systems for drug delivery. Jundishapur J. Nat. Pharm. Prod. 2014 9 3 e20126 10.17795/jjnpp‑20126 25237648
    [Google Scholar]
  23. Wang X. Liu G. Ma J. Guo S. Gao L. Jia Y. Li X. Zhang Q. In-Situ gel-forming system: An attractive alternative for nasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2013 30 5 411 434 10.1615/CritRevTherDrugCarrierSyst.2013007362 24099327
    [Google Scholar]
  24. Dasankoppa F. Solankiy P. Sholapur H. Jamakandi V. Sajjanar V. Walveka P. Design, formulation, and evaluation of In-Situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers. Indian J. Health Sci. Biomed. Res. KLEU 2017 10 3 323 10.4103/kleuhsj.kleuhsj_131_17
    [Google Scholar]
  25. Kim Y.C. Shin M.D. Hackett S.F. Hsueh H.T. Lima e Silva R. Date A. Han H. Kim B.J. Xiao A. Kim Y. Ogunnaike L. Anders N.M. Hemingway A. He P. Jun A.S. McDonnell P.J. Eberhart C. Pitha I. Zack D.J. Campochiaro P.A. Hanes J. Ensign L.M. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat. Biomed. Eng. 2020 4 11 1053 1062 10.1038/s41551‑020‑00606‑8 32895514
    [Google Scholar]
  26. Torres-Luna C. Fan X. Domszy R. Hu N. Wang N.S. Yang A. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur. J. Pharm. Sci. 2020 154 105503 10.1016/j.ejps.2020.105503 32745587
    [Google Scholar]
  27. Gote V. Sikder S. Sicotte J. Pal D. Ocular drug delivery: Present innovations and future challenges. J. Pharmacol. Exp. Ther. 2019 370 3 602 624 10.1124/jpet.119.256933 31072813
    [Google Scholar]
  28. Cook M.T. Haddow P. Kirton S.B. McAuley W.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 2021 31 8 2008123 10.1002/adfm.202008123
    [Google Scholar]
  29. Yilmazer S. Schwaller D. Mésini P.J. Beyond Sol-Gel: Molecular gels with different transitions. Gels 2023 9 4 273 10.3390/gels9040273 37102885
    [Google Scholar]
  30. Theune L.E. Charbaji R. Kar M. Wedepohl S. Hedtrich S. Calderón M. Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Mater. Sci. Eng. C 2019 100 141 151 10.1016/j.msec.2019.02.089 30948048
    [Google Scholar]
  31. Devaraj A. Wang W. Vemuri R. Kovarik L. Jiang X. Bowden M. Trelewicz J.R. Mathaudhu S. Rohatgi A. Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 2019 165 698 708 10.1016/j.actamat.2018.09.038
    [Google Scholar]
  32. Taylor M. Tomlins P. Sahota T. Thermoresponsive Gels. Gels 2017 3 1 4 10.3390/gels3010004 30920501
    [Google Scholar]
  33. Chai Q. Jiao Y. Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017 3 1 6 10.3390/gels3010006 30920503
    [Google Scholar]
  34. Russo E. Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019 11 12 671 10.3390/pharmaceutics11120671 31835628
    [Google Scholar]
  35. Ganguly R. Kumar S. Tripathi A. Basu M. Verma G. Sarma H.D. Chaudhari D.P. Aswal V.K. Melo J.S. Structural and therapeutic properties of Pluronic® P123/F127 micellar systems and their modulation by salt and essential oil. J. Mol. Liq. 2020 310 113231 10.1016/j.molliq.2020.113231
    [Google Scholar]
  36. Khaliq N.U. Lee J. Kim S. Sung D. Kim H. Pluronic F-68 and F-127 based nanomedicines for advancing combination cancer therapy. Pharmaceutics 2023 15 8 2102 10.3390/pharmaceutics15082102 37631316
    [Google Scholar]
  37. Gupta B. Mishra V. Gharat S. Momin M. Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals 2021 14 11 1201 10.3390/ph14111201 34832983
    [Google Scholar]
  38. Tundisi L.L. Mostaço G.B. Carricondo P.C. Petri D.F.S. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations. Eur. J. Pharm. Sci. 2021 159 105736 10.1016/j.ejps.2021.105736 33516807
    [Google Scholar]
  39. Ali MK Mir SH Hyder MKMZ Yang W Harvesting of bioenergy and biomaterials from marine resources. Encyclopedia of Marine Biotechnology. Wiley 2020 711 736 10.1002/9781119143802.ch27
    [Google Scholar]
  40. Zamboulis A. Nanaki S. Michailidou G. Koumentakou I. Lazaridou M. Ainali N.M. Xanthopoulou E. Bikiaris D.N. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments. Polymers 2020 12 7 1519 10.3390/polym12071519 32650536
    [Google Scholar]
  41. Shastri D.H. Patel L.D. Parikh R.K. Studies on In-Situ hydrogel: A smart way for safe and sustained ocular drug delivery. J. Young Pharm. 2010 2 2 116 120 10.4103/0975‑1483.63144 21264112
    [Google Scholar]
  42. Gupta H. Velpandian T. Jain S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J. Drug Target. 2010 18 7 499 505 10.3109/10611860903508788 20055752
    [Google Scholar]
  43. Qi H. Chen W. Huang C. Li L. Chen C. Li W. Wu C. Development of a poloxamer analogs/carbopol-based In-Situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm. 2007 337 1-2 178 187 10.1016/j.ijpharm.2006.12.038 17254725
    [Google Scholar]
  44. Silva M. Calado R. Marto J. Bettencourt A. Almeida A. Gonçalves L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs 2017 15 12 370 10.3390/md15120370 29194378
    [Google Scholar]
  45. Li C. Huang Z. Liu Z. Ci L. Liu Z. Liu Y. Yan X. Lu W. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: Improved stability, mucin-dependent release and effective intravaginal placement. Int. J. Nanomedicine 2016 11 5917 5930 10.2147/IJN.S113658 27877038
    [Google Scholar]
  46. Weng J. Fink M.K. Sharma A. A critical appraisal of the physicochemical properties and biological effects of artificial tear ingredients and formulations. Int. J. Mol. Sci. 2023 24 3 2758 10.3390/ijms24032758 36769079
    [Google Scholar]
  47. Caló E. Barros J. Ballamy L. Khutoryanskiy V.V. Poly(vinyl alcohol)–Gantrez® AN cryogels for wound care applications. RSC Advances 2016 6 107 105487 105494 10.1039/C6RA24573K
    [Google Scholar]
  48. Li P. Zhu L. Ao J. A novel In-Situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: In vitro and in vivo evaluation. Drug Des. Devel. Ther. 2015 3943 3943 10.2147/DDDT.S87368
    [Google Scholar]
  49. Permanadewi I. Kumoro A.C. Wardhani D.H. Aryanti N. Mathematical approach for estimation of Alginate-Iron salt solutions viscosity at various solid concentrations and temperatures. Curr. Res. Nutr. Food Sci. 2021 9 1 75 87 10.12944/CRNFSJ.9.1.08
    [Google Scholar]
  50. Sahoo D.R. Biswal T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021 3 1 30 10.1007/s42452‑020‑04096‑w
    [Google Scholar]
  51. Mittal N. Kaur G. In-Situ gelling ophthalmic drug delivery system: Formulation and evaluation. J. Appl. Polym. Sci. 2014 131 2 app.39788 10.1002/app.39788
    [Google Scholar]
  52. Mundada A.S. Avari J.G. In-Situ gelling polymers in ocular drug delivery systems: A review. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 1 85 118 10.1615/CritRevTherDrugCarrierSyst.v26.i1.30 19496748
    [Google Scholar]
  53. Deshmukh P.K. Gattani S.G. in-vitro and in vivo consideration of novel environmentally responsive ophthalmic drug delivery system. Pharm. Dev. Technol. 2013 18 4 950 956 10.3109/10837450.2011.644297 22200332
    [Google Scholar]
  54. Ma W. Xu H. Nie S. Pan W. Temperature-responsive, Pluronic-g-poly(acrylic acid) copolymers in-situ gels for ophthalmic drug delivery: Rheology, in-vitro drug release, and in vivo resident property. Drug Dev. Ind. Pharm. 2008 34 3 258 266 10.1080/03639040701580622 18363141
    [Google Scholar]
  55. Destruel P.L. Zeng N. Seguin J. Douat S. Rosa F. Brignole-Baudouin F. Dufaÿ S. Dufaÿ-Wojcicki A. Maury M. Mignet N. Boudy V. Novel In-situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int. J. Pharm. 2020 574 118734 10.1016/j.ijpharm.2019.118734 31705970
    [Google Scholar]
  56. Malektaj H. Drozdov A.D. deClaville Christiansen J. Swelling of homogeneous alginate gels with multi-stimuli sensitivity. Int. J. Mol. Sci. 2023 24 6 5064 10.3390/ijms24065064 36982139
    [Google Scholar]
  57. Jain D. Newer trends in In-Situ gelling systems for controlled ocular drug delivery. J. Anal. Pharm. Res. 2016 2 3 10.15406/japlr.2016.02.00022
    [Google Scholar]
  58. Černohlávek M. Brandejsová M. Štěpán P. Vagnerová H. Hermannová M. Kopecká K. Kulhánek J. Nečas D. Vrbka M. Velebný V. Huerta-Angeles G. Insight into the lubrication and adhesion properties of hyaluronan for ocular drug delivery. Biomolecules 2021 11 10 1431 10.3390/biom11101431 34680064
    [Google Scholar]
  59. Huynh A. Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr. Res. 2020 489 107950 10.1016/j.carres.2020.107950 32070808
    [Google Scholar]
  60. Jeong W. Hong J. Jung M. Jang M. An S. Jo T. Kwon S. Son D. Therapeutic effects of amnion-conjugated chitosan-alginate membranes on diabetic wounds in an induced diabetic swine model: An in vitro and in vivo study Arch. Plast. Surg. 2022 49 2 258 265 10.1055/s‑0042‑1744429 35832677
    [Google Scholar]
  61. Destruel P.L. Zeng N. Maury M. Mignet N. Boudy V. In vitro and in vivo evaluation of in-situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond. Drug Discov. Today 2017 22 4 638 651 10.1016/j.drudis.2016.12.008 28017837
    [Google Scholar]
  62. Patel P. Patel G. Formulation, ex-vivo and preclinical in-vivo studies of combined ph and ion-sensitive ocular sustained in-situ hydrogel of timolol maleate for the treatment of glaucoma. Biointerface Res. Appl. Chem. 2020 11 1 8242 8265 10.33263/BRIAC111.82428265
    [Google Scholar]
  63. Wancura M. Nkansah A. Robinson A. Toubbeh S. Talanker M. Jones S. Cosgriff-Hernandez E. PEG-based hydrogel coatings: Design tools for biomedical applications. Ann. Biomed. Eng. 2024 52 7 1804 1815 10.1007/s10439‑023‑03154‑9 36774427
    [Google Scholar]
  64. Annala A. Ilochonwu B.C. Wilbie D. Sadeghi A. Hennink W.E. Vermonden T. Self-healing thermosensitive hydrogel for sustained release of dexamethasone for ocular therapy. ACS Polym. Au 2023 3 1 118 131 10.1021/acspolymersau.2c00038 36785837
    [Google Scholar]
  65. Toader G. Podaru A.I. Diacon A. Rusen E. Mocanu A. Brincoveanu O. Alexandru M. Zorila F.L. Bacalum M. Albota F. Gavrila A.M. Trica B. Rotariu T. Ionita M. Istrate M. Nanocomposite hydrogel films based on sequential interpenetrating polymeric networks as drug delivery platforms. Polymers 2023 15 15 3176 10.3390/polym15153176 37571071
    [Google Scholar]
  66. Zhang X.P. Sun J.G. Yao J. Shan K. Liu B.H. Yao M.D. Ge H.M. Jiang Q. Zhao C. Yan B. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed. Pharmacother. 2018 107 1056 1063 10.1016/j.biopha.2018.08.092 30257317
    [Google Scholar]
  67. Das B. Chattopadhyay D. Rana D. The gamut of perspectives, challenges, and recent trends for In-Situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomater. Sci. 2020 8 17 4665 4691 10.1039/D0BM00532K 32760957
    [Google Scholar]
  68. Jumelle C. Gholizadeh S. Annabi N. Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020 321 1 22 10.1016/j.jconrel.2020.01.057 32027938
    [Google Scholar]
  69. Matanović M.R. Kristl J. Grabnar P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014 472 1-2 262 275 10.1016/j.ijpharm.2014.06.029 24950367
    [Google Scholar]
  70. Shelley H. Grant M. Smith F.T. Abarca E.M. Jayachandra Babu R. Improved ocular delivery of nepafenac by cyclodextrin complexation. AAPS Pharm Sci Tech 2018 19 6 2554 2563 10.1208/s12249‑018‑1094‑0 29948988
    [Google Scholar]
  71. Moiseev R.V. Steele F. Khutoryanskiy V.V. Polyaphron formulations stabilised with different water-soluble polymers for ocular drug delivery. Pharmaceutics 2022 14 5 926 10.3390/pharmaceutics14050926 35631511
    [Google Scholar]
  72. Abdelmohsen H.A.M. Copeland N.A. Hardy J.G. Light-responsive biomaterials for ocular drug delivery. Drug Deliv. Transl. Res. 2023 13 8 2159 2182 10.1007/s13346‑022‑01196‑5 35751001
    [Google Scholar]
  73. Liu Z. Li J. Nie S. Liu H. Ding P. Pan W. Study of an alginate/HPMC-based In-Situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm. 2006 315 1-2 12 17 10.1016/j.ijpharm.2006.01.029 16616442
    [Google Scholar]
  74. Thang N.H. Chien T.B. Cuong D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023 9 7 523 10.3390/gels9070523 37504402
    [Google Scholar]
  75. Pan Z. Fu Q.Q. Wang M.H. Gao H.L. Dong L. Zhou P. Cheng D.D. Chen Y. Zou D.H. He J.C. Feng X. Yu S.H. Designing nanohesives for rapid, universal, and robust hydrogel adhesion. Nat. Commun. 2023 14 1 5378 10.1038/s41467‑023‑40753‑5 37666848
    [Google Scholar]
  76. Porfiryeva N.N. Moustafine R.I. Khutoryanskiy V.V. PEGylated systems in pharmaceutics. Polym. Sci. Ser. C 2020 62 1 62 74 10.1134/S181123822001004X
    [Google Scholar]
  77. Chelu M. Musuc A.M. Polymer gels: Classification and recent developments in biomedical applications. Gels 2023 9 2 161 10.3390/gels9020161 36826331
    [Google Scholar]
  78. Pertici V. Pin-Barre C. Rivera C. Pellegrino C. Laurin J. Gigmes D. Trimaille T. Degradable and injectable hydrogel for drug delivery in soft tissues. Biomacromolecules 2019 20 1 149 163 10.1021/acs.biomac.8b01242 30376309
    [Google Scholar]
  79. Li J. Liu H. Liu L. Cai C. Xin H. Liu W. Design and evaluation of a brinzolamide drug-resin in-situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem. Pharm. Bull. (Tokyo) 2014 62 10 1000 1008 10.1248/cpb.c14‑00451 25099146
    [Google Scholar]
  80. Al Khateb K. Ozhmukhametova E.K. Mussin M.N. Seilkhanov S.K. Rakhypbekov T.K. Lau W.M. Khutoryanskiy V.V. In-situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016 502 1-2 70 79 10.1016/j.ijpharm.2016.02.027 26899977
    [Google Scholar]
  81. Morsi N. Ghorab D. Refai H. Teba H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive In-Situ gel for prolonged ocular delivery. Int. J. Pharm. 2016 506 1-2 57 67 10.1016/j.ijpharm.2016.04.021 27091293
    [Google Scholar]
  82. Sawant D. Dandagi P.M. Gadad A.P. Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in-situ gel for ophthalmic delivery. J. Sol-Gel Sci. Technol. 2016 77 3 654 665 10.1007/s10971‑015‑3897‑8
    [Google Scholar]
  83. Lihong W. Xin C. Yongxue G. Yiying B. Gang C. Thermoresponsive ophthalmic poloxamer/tween/carbopol In-Situ gels of a poorly water-soluble drug fluconazole: Preparation and in-vitroin vivo evaluation. Drug Dev. Ind. Pharm. 2014 40 10 1402 1410 10.3109/03639045.2013.828221 23944837
    [Google Scholar]
  84. Gadad A.P. Wadklar P.D. Dandghi P. Patil A. Thermosensitive in-situ gel for ocular delivery of Lomefloxacin. Indian J. Pharm. Educ. Res. 2016 50 2
    [Google Scholar]
  85. Qian Y. Wang F. Li R. Zhang Q. Xu Q. Preparation and evaluation of in-situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev. Ind. Pharm. 2010 36 11 1340 1347 10.3109/03639041003801893 20849349
    [Google Scholar]
  86. Asasutjarit R. Thanasanchokpibull S. Fuongfuchat A. Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in-situ gels. Int. J. Pharm. 2011 411 1-2 128 135 10.1016/j.ijpharm.2011.03.054 21459137
    [Google Scholar]
  87. Ammar H.O. Salama H.A. Ghorab M. Mahmoud A.A. Development of dorzolamide hydrochloride in-situ gel nanoemulsion for ocular delivery. Drug Dev. Ind. Pharm. 2010 36 11 1330 1339 10.3109/03639041003801885 20545523
    [Google Scholar]
  88. Wu H. Liu Z. Peng J. Li L. Li N. Li J. Pan H. Design and evaluation of baicalin-containing in-situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm. 2011 410 1-2 31 40 10.1016/j.ijpharm.2011.03.007 21397671
    [Google Scholar]
  89. Makwana S.B. Patel V.A. Parmar S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016 6 1 6 10.1016/j.rinphs.2015.06.001 26949596
    [Google Scholar]
  90. Upadhayay P. Kumar M. Pathak K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity. Iran J Pharm Res. 2016 15 1 3 22
    [Google Scholar]
  91. Gupta S. Vyas S.P. Carbopol/chitosan based pH triggered in-situ gelling system for ocular delivery of timolol maleate. Sci. Pharm. 2010 78 4 959 976 10.3797/scipharm.1001‑06 21179328
    [Google Scholar]
  92. Pang X. Li J. Pi J. Qi D. Guo P. Li N. Wu Y. Liu Z. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits. Pharm. Dev. Technol. 2018 23 3 231 239 10.1080/10837450.2017.1328693 28488447
    [Google Scholar]
  93. Kanoujia J. Sonker K. Pandey M. Kymonil K.M. Saraf S.A. Formulation and characterization of a novel pH-triggered in-situ gelling ocular system containing Gatifloxacin. Int. Curr. Pharm. J. 1970 1 3 43 49 10.3329/icpj.v1i3.9661
    [Google Scholar]
  94. Mohammadinejad R. Maleki H. Larrañeta E. Fajardo A.R. Nik A.B. Shavandi A. Sheikhi A. Ghorbanpour M. Farokhi M. Govindh P. Cabane E. Azizi S. Aref A.R. Mozafari M. Mehrali M. Thomas S. Mano J.F. Mishra Y.K. Thakur V.K. Status and future scope of plant-based green hydrogels in biomedical engineering. Appl. Mater. Today 2019 16 213 246 10.1016/j.apmt.2019.04.010
    [Google Scholar]
  95. Shirasaki Y. Molecular design for enhancement of ocular penetration. J. Pharm. Sci. 2008 97 7 2462 2496 10.1002/jps.21200 17918725
    [Google Scholar]
  96. Fernández-Ferreiro A. Fernández Bargiela N. Varela M.S. Martínez M.G. Pardo M. Piñeiro Ces A. Méndez J.B. Barcia M.G. Lamas M.J. Otero-Espinar F. Cyclodextrin–polysaccharide-based, in-situ-gelled system for ocular antifungal delivery. Beilstein J. Org. Chem. 2014 10 2903 2911 10.3762/bjoc.10.308 25550757
    [Google Scholar]
  97. Morsi N. Ibrahim M. Refai H. El Sorogy H. Nanoemulsion-based electrolyte triggered in-situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci. 2017 104 302 314 10.1016/j.ejps.2017.04.013 28433750
    [Google Scholar]
  98. Tayel S.A. El-Nabarawi M.A. Tadros M.I. Abd-Elsalam W.H. Promising ion-sensitive in-situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm. 2013 443 1-2 293 305 10.1016/j.ijpharm.2012.12.049 23333217
    [Google Scholar]
  99. Rupenthal I.D. Alany R.G. Green C.R. Ion-activated in-situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol. Pharm. 2011 8 6 2282 2290 10.1021/mp200140e 21985532
    [Google Scholar]
  100. Khan N. Aqil M. Imam S.S. Ali A. Development and evaluation of a novel in-situ gel of sparfloxacin for sustained ocular drug delivery: in-vitro and ex vivo characterization. Pharm. Dev. Technol. 2015 20 6 662 669 10.3109/10837450.2014.910807 24754411
    [Google Scholar]
  101. Yu S. Zhang X. Tan G. Tian L. Liu D. Liu Y. Yang X. Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr. Polym. 2017 155 208 217 10.1016/j.carbpol.2016.08.073 27702506
    [Google Scholar]
  102. Ahmed B. Jaiswal S. Naryal S. Shah R.M. Alany R.G. Kaur I.P. in-situ gelling systems for ocular drug delivery. J. Control. Release 2024 371 67 84 10.1016/j.jconrel.2024.05.031 38768662
    [Google Scholar]
  103. Aqil M. Gupta H. Khar R.K. Ali A. Bhatnagar A. Mittal G. An alternative in-situ gel-formulation of levofloxacin eye drops for prolong ocular retention. J. Pharm. Bioallied Sci. 2015 7 1 9 14 10.4103/0975‑7406.149810 25709330
    [Google Scholar]
  104. Başaran B. Bozkir A. Thermosensitive and pH induced In-Situ ophthalmic gelling system for ciprofloxacin hydrochloride: Hydroxypropyl-beta-cyclodextrin complex. Acta Pol Pharm. 2013 69 6 1137
    [Google Scholar]
  105. Deka M. Ahmed A.B. Chakraborty J. Development, evaluation and characteristics of ophthalmic in-situ gel system: A review. Int. J. Curr. Pharm. Res. 2019 ••• 47 53 10.22159/ijcpr.2019v11i4.34949
    [Google Scholar]
  106. Buwalda S.J. Vermonden T. Hennink W.E. Hydrogels for therapeutic delivery: Current developments and future directions. Biomacromolecules 2017 18 2 316 330 10.1021/acs.biomac.6b01604 28027640
    [Google Scholar]
  107. Aqil M. Gupta H. Khar R. Ali A. Bhatnagar A. Mittal G. Nanoparticles laden In-Situ gel for sustained ocular drug delivery. J. Pharm. Bioallied Sci. 2013 5 2 162 165 10.4103/0975‑7406.111824 23833523
    [Google Scholar]
  108. Guidi L. Cascone M.G. Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives. Heliyon 2024 10 5 e26616 10.1016/j.heliyon.2024.e26616 38434257
    [Google Scholar]
  109. Kalaria V.J. Saisivam S. Alshishani A. Aljariri Alhesan J.S. Chakraborty S. Rahamathulla M. Design and evaluation of in-situ gel eye drops containing nanoparticles of Gemifloxacin Mesylate. Drug Deliv. 2023 30 1 2185180 10.1080/10717544.2023.2185180 36876464
    [Google Scholar]
  110. Kolawole O.M. Cook M.T. In-Situ gelling drug delivery systems for topical drug delivery. Eur. J. Pharm. Biopharm. 2023 184 36 49 10.1016/j.ejpb.2023.01.007 36642283
    [Google Scholar]
  111. Zeng Y. Chen J. Li Y. Huang J. Huang Z. Huang Y. Pan X. Wu C. Thermo-sensitive gel in glaucoma therapy for enhanced bioavailability: In-vitro characterization, in vivo pharmacokinetics and pharmacodynamics study. Life Sci. 2018 212 80 86 10.1016/j.lfs.2018.09.050 30268857
    [Google Scholar]
  112. Sánchez-González J.M. Silva-Viguera C. Sánchez-González M.C. Capote-Puente R. De-Hita-Cantalejo C. Ballesteros-Sánchez A. Ballesteros-Durán L. García-Romera M.C. Gutiérrez-Sánchez E. Tear film stabilization and symptom improvement in dry eye disease: The role of hyaluronic acid and trehalose eyedrops versus carmellose sodium. J. Clin. Med. 2023 12 20 6647 10.3390/jcm12206647 37892784
    [Google Scholar]
  113. Alsaidan O.A. Zafar A. Yasir M. Alzarea S.I. Alqinyah M. Khalid M. Development of Ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Optimization, in-vitro characterization, KLo permeation, and antimicrobial study. Gels 2022 8 11 687 10.3390/gels8110687 36354595
    [Google Scholar]
  114. Shelley H. Rodriguez-Galarza R.M. Duran S.H. Abarca E.M. Babu R.J. In-situ gel formulation for enhanced ocular delivery of nepafenac. J. Pharm. Sci. 2018 107 12 3089 3097 10.1016/j.xphs.2018.08.013 30170009
    [Google Scholar]
/content/journals/aia/10.2174/0122113525361929250127060448
Loading
/content/journals/aia/10.2174/0122113525361929250127060448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test