Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Ocular drug delivery presents significant challenges due to the intricate anatomy and protective barriers of the eye, which limit drug penetration and retention. Addressing common issues like ocular pain and inflammation, conditions that substantially impact the quality of life, requires innovative approaches. This review focuses on gel systems as a promising solution for ocular drug delivery, specifically for managing pain and inflammation. gels, which transition from liquid to gel upon contact with the eye, offer distinct advantages over traditional formulations, such as prolonged residence time, sustained drug release, enhanced drug retention, and minimized systemic side effects. These benefits contribute to enhanced therapeutic efficacy and increased patient comfort. It also examines various polymers and gelling mechanisms used in gels, including temperature-sensitive, pH-sensitive, and ion-activated polymers. While there is significant promise in the development of gel systems, several challenges must be addressed, including the optimization of viscosity, the assurance of biocompatibility, and the precise adjustment of drug release profiles. Future research is geared toward integrating novel polymers, designing stimuli-responsive systems, and advancing targeted drug delivery strategies. These innovations aim to further improve the effectiveness and patient compliance of gel systems for ocular applications, offering a viable alternative for sustained and comfortable management of ocular pain and inflammation.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525361929250127060448
2025-02-26
2025-10-13
Loading full text...

Full text loading...

References

  1. LinK.T. WangA. NguyenA.B. IyerJ. TranS.D. Recent advances in hydrogels: Ophthalmic applications in cell delivery, vitreous substitutes, and ocular adhesives.Biomedicines202199120310.3390/biomedicines9091203 34572389
    [Google Scholar]
  2. DuaH.S. TingD.S.J. Al SaadiA. SaidD.G. Chemical eye injury: Pathophysiology, assessment and management.Eye (Lond.)202034112001201910.1038/s41433‑020‑1026‑6 32572184
    [Google Scholar]
  3. GabaiA. ZeppieriM. FinocchioL. SalatiC. Innovative strategies for drug delivery to the ocular posterior segment.Pharmaceutics2023157186210.3390/pharmaceutics15071862 37514050
    [Google Scholar]
  4. González-Cela-CasamayorM.A. López-CanoJ.J. Bravo-OsunaI. Andrés-GuerreroV. Vicario-de-la-TorreM. Guzmán-NavarroM. Benítez-del-CastilloJ.M. Herrero-VanrellR. Molina-MartínezI.T. Novel osmoprotective DOPC-DMPC liposomes loaded with antihypertensive drugs as potential strategy for glaucoma treatment.Pharmaceutics2022147140510.3390/pharmaceutics14071405 35890300
    [Google Scholar]
  5. DammakA. PastranaC. Martin-GilA. Carpena-TorresC. Peral CerdaA. SimovartM. AlarmaP. Huete-ToralF. CarracedoG. Oxidative stress in the anterior ocular diseases: Diagnostic and treatment.Biomedicines202311229210.3390/biomedicines11020292 36830827
    [Google Scholar]
  6. PflugfelderS.C. de PaivaC.S. The pathophysiology of dry eye disease.Ophthalmology201712411S4S1310.1016/j.ophtha.2017.07.010 29055361
    [Google Scholar]
  7. PaoliniM.S. FentonO.S. BhattacharyaC. AndresenJ.L. LangerR. Polymers for extended-release administration.Biomed. Microdevices20192124510.1007/s10544‑019‑0386‑9 30963297
    [Google Scholar]
  8. CamposP.M. PetrilliR. LopezR.F.V. The prominence of the dosage form design to treat ocular diseases.Int. J. Pharm.202058611957710.1016/j.ijpharm.2020.119577 32622806
    [Google Scholar]
  9. Al-KinaniA.A. ZidanG. ElsaidN. SeyfoddinA. AlaniA.W.G. AlanyR.G. Ophthalmic gels: Past, present and future.Adv. Drug Deliv. Rev.201812611312610.1016/j.addr.2017.12.017 29288733
    [Google Scholar]
  10. CassanoR. Di GioiaM.L. TrombinoS. Gel-based materials for ophthalmic drug delivery.Gels20217313010.3390/gels7030130 34563016
    [Google Scholar]
  11. WuY. LiuY. LiX. KebebeD. ZhangB. RenJ. LuJ. LiJ. DuS. LiuZ. Research progress of in-situ gelling ophthalmic drug delivery system.Asian J. Pharm. Sci.201914111510.1016/j.ajps.2018.04.008 32104434
    [Google Scholar]
  12. KaurH. loyeeS. GargR. Formulation and evaluation of in-situ ocular gel of gatifloxacin.Int. J. Pharma Res. Health Sci.2016451365137010.21276/ijprhs.2016.05.05
    [Google Scholar]
  13. ViganiB. RossiS. SandriG. BonferoniM.C. CaramellaC.M. FerrariF. Recent advances in the development of in-situ gelling drug delivery systems for non-parenteral administration routes.Pharmaceutics202012985910.3390/pharmaceutics12090859 32927595
    [Google Scholar]
  14. MaW.D. XuH. WangC. NieS.F. PanW.S. Pluronic F127-g-poly(acrylic acid) copolymers as in-situ gelling vehicle for ophthalmic drug delivery system.Int. J. Pharm.20083501-224725610.1016/j.ijpharm.2007.09.005 17961940
    [Google Scholar]
  15. KaravasiliC. FatourosD.G. Smart materials: In-situ gel-forming systems for nasal delivery.Drug Discov. Today201621115716610.1016/j.drudis.2015.10.016 26563428
    [Google Scholar]
  16. SivadasanD. SultanM.H. AlqahtaniS.S. JavedS. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications.Biomedicines2023114111410.3390/biomedicines11041114 37189732
    [Google Scholar]
  17. UrttiA. Kinetic aspects in the design of prolonged action ocular drug delivery systems. Advances in Pharmaceutical Sciences.Academic Press1995639210.1016/S0065‑3136(06)80004‑X
    [Google Scholar]
  18. El SayedM.M. Production of Polymer hydrogel composites and their applications.J. Polym. Environ.20233172855287910.1007/s10924‑023‑02796‑z
    [Google Scholar]
  19. KurniawansyahI.S. RusdianaT. SopyanI. Desy AryaI.F. WahabH.A. NurzanahD. Comparative study of in-situ gel formulation based on the physico-chemical aspect: Systematic review.Gels20239864510.3390/gels9080645 37623100
    [Google Scholar]
  20. PandeyM. ChoudhuryH. binti Abd AzizA. BhattamisraS.K. GorainB. SuJ.S.T. TanC.L. ChinW.Y. YipK.Y. Potential of stimuli-responsive in-situ gel system for sustained ocular drug delivery: Recent progress and contemporary research.Polymers2021138134010.3390/polym13081340 33923900
    [Google Scholar]
  21. NayakA.K. BeraH. In-situ polysaccharide-based gels for topical drug delivery applications. Polysaccharide Carriers for Drug Delivery.Elsevier201961563810.1016/B978‑0‑08‑102553‑6.00021‑0
    [Google Scholar]
  22. KouchakM. In-situ gelling systems for drug delivery.Jundishapur J. Nat. Pharm. Prod.201493e2012610.17795/jjnpp‑20126 25237648
    [Google Scholar]
  23. WangX. LiuG. MaJ. GuoS. GaoL. JiaY. LiX. ZhangQ. In-situ gel-forming system: An attractive alternative for nasal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201330541143410.1615/CritRevTherDrugCarrierSyst.2013007362 24099327
    [Google Scholar]
  24. DasankoppaF. SolankiyP. SholapurH. JamakandiV. SajjanarV. WalvekaP. Design, formulation, and evaluation of in-situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers.Indian J. Health Sci. Biomed. Res. KLEU201710332310.4103/kleuhsj.kleuhsj_131_17
    [Google Scholar]
  25. KimY.C. ShinM.D. HackettS.F. HsuehH.T. Lima e SilvaR. DateA. HanH. KimB.J. XiaoA. KimY. OgunnaikeL. AndersN.M. HemingwayA. HeP. JunA.S. McDonnellP.J. EberhartC. PithaI. ZackD.J. CampochiaroP.A. HanesJ. EnsignL.M. Gelling hypotonic polymer solution for extended topical drug delivery to the eye.Nat. Biomed. Eng.20204111053106210.1038/s41551‑020‑00606‑8 32895514
    [Google Scholar]
  26. Torres-LunaC. FanX. DomszyR. HuN. WangN.S. YangA. Hydrogel-based ocular drug delivery systems for hydrophobic drugs.Eur. J. Pharm. Sci.202015410550310.1016/j.ejps.2020.105503 32745587
    [Google Scholar]
  27. GoteV. SikderS. SicotteJ. PalD. Ocular drug delivery: Present innovations and future challenges.J. Pharmacol. Exp. Ther.2019370360262410.1124/jpet.119.256933 31072813
    [Google Scholar]
  28. CookM.T. HaddowP. KirtonS.B. McAuleyW.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare.Adv. Funct. Mater.2021318200812310.1002/adfm.202008123
    [Google Scholar]
  29. YilmazerS. SchwallerD. MésiniP.J. Beyond Sol-Gel: Molecular gels with different transitions.Gels20239427310.3390/gels9040273 37102885
    [Google Scholar]
  30. TheuneL.E. CharbajiR. KarM. WedepohlS. HedtrichS. CalderónM. Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery.Mater. Sci. Eng. C201910014115110.1016/j.msec.2019.02.089 30948048
    [Google Scholar]
  31. DevarajA. WangW. VemuriR. KovarikL. JiangX. BowdenM. TrelewiczJ.R. MathaudhuS. RohatgiA. Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys.Acta Mater.201916569870810.1016/j.actamat.2018.09.038
    [Google Scholar]
  32. TaylorM. TomlinsP. SahotaT. Thermoresponsive Gels.Gels201731410.3390/gels3010004 30920501
    [Google Scholar]
  33. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels3010006 30920503
    [Google Scholar]
  34. RussoE. VillaC. Poloxamer hydrogels for biomedical applications.Pharmaceutics2019111267110.3390/pharmaceutics11120671 31835628
    [Google Scholar]
  35. GangulyR. KumarS. TripathiA. BasuM. VermaG. SarmaH.D. ChaudhariD.P. AswalV.K. MeloJ.S. Structural and therapeutic properties of Pluronic® P123/F127 micellar systems and their modulation by salt and essential oil.J. Mol. Liq.202031011323110.1016/j.molliq.2020.113231
    [Google Scholar]
  36. KhaliqN.U. LeeJ. KimS. SungD. KimH. Pluronic F-68 and F-127 based nanomedicines for advancing combination cancer therapy.Pharmaceutics2023158210210.3390/pharmaceutics15082102 37631316
    [Google Scholar]
  37. GuptaB. MishraV. GharatS. MominM. OmriA. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems.Pharmaceuticals20211411120110.3390/ph14111201 34832983
    [Google Scholar]
  38. TundisiL.L. MostaçoG.B. CarricondoP.C. PetriD.F.S. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations.Eur. J. Pharm. Sci.202115910573610.1016/j.ejps.2021.105736 33516807
    [Google Scholar]
  39. AliM.K. MirS.H. HyderM.K.M.Z. YangW. Harvesting of bioenergy and biomaterials from marine resources. Encyclopedia of Marine Biotechnology.Wiley202071173610.1002/9781119143802.ch27
    [Google Scholar]
  40. ZamboulisA. NanakiS. MichailidouG. KoumentakouI. LazaridouM. AinaliN.M. XanthopoulouE. BikiarisD.N. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments.Polymers2020127151910.3390/polym12071519 32650536
    [Google Scholar]
  41. ShastriD.H. PatelL.D. ParikhR.K. Studies on in-situ hydrogel: A smart way for safe and sustained ocular drug delivery.J. Young Pharm.20102211612010.4103/0975‑1483.63144 21264112
    [Google Scholar]
  42. GuptaH. VelpandianT. JainS. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery.J. Drug Target.201018749950510.3109/10611860903508788 20055752
    [Google Scholar]
  43. QiH. ChenW. HuangC. LiL. ChenC. LiW. WuC. Development of a poloxamer analogs/carbopol-based in-situ gelling and mucoadhesive ophthalmic delivery system for puerarin.Int. J. Pharm.20073371-217818710.1016/j.ijpharm.2006.12.038 17254725
    [Google Scholar]
  44. SilvaM. CaladoR. MartoJ. BettencourtA. AlmeidaA. GonçalvesL. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration.Mar. Drugs2017151237010.3390/md15120370 29194378
    [Google Scholar]
  45. LiC. HuangZ. LiuZ. CiL. LiuZ. LiuY. YanX. LuW. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: Improved stability, mucin-dependent release and effective intravaginal placement.Int. J. Nanomedicine2016115917593010.2147/IJN.S113658 27877038
    [Google Scholar]
  46. WengJ. FinkM.K. SharmaA. A critical appraisal of the physicochemical properties and biological effects of artificial tear ingredients and formulations.Int. J. Mol. Sci.2023243275810.3390/ijms24032758 36769079
    [Google Scholar]
  47. CalóE. BarrosJ. BallamyL. KhutoryanskiyV.V. Poly(vinyl alcohol)-Gantrez® AN cryogels for wound care applications.RSC Advances2016610710548710549410.1039/C6RA24573K
    [Google Scholar]
  48. LiP. ZhuL. AoJ. A novel in-situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: In vitro and in vivo evaluation.Drug Des. Devel. Ther.20153943394310.2147/DDDT.S87368
    [Google Scholar]
  49. PermanadewiI. KumoroA.C. WardhaniD.H. AryantiN. Mathematical approach for estimation of Alginate-Iron salt solutions viscosity at various solid concentrations and temperatures.Curr. Res. Nutr. Food Sci.202191758710.12944/CRNFSJ.9.1.08
    [Google Scholar]
  50. SahooD.R. BiswalT. Alginate and its application to tissue engineering.SN Appl. Sci.2021313010.1007/s42452‑020‑04096‑w
    [Google Scholar]
  51. MittalN. KaurG. In-situ gelling ophthalmic drug delivery system: Formulation and evaluation.J. Appl. Polym. Sci.20141312app.3978810.1002/app.39788
    [Google Scholar]
  52. MundadaA.S. AvariJ.G. In-situ gelling polymers in ocular drug delivery systems: A review.Crit. Rev. Ther. Drug Carrier Syst.20092618511810.1615/CritRevTherDrugCarrierSyst.v26.i1.30 19496748
    [Google Scholar]
  53. DeshmukhP.K. GattaniS.G. In-vitro and in vivo consideration of novel environmentally responsive ophthalmic drug delivery system.Pharm. Dev. Technol.201318495095610.3109/10837450.2011.644297 22200332
    [Google Scholar]
  54. MaW. XuH. NieS. PanW. Temperature-responsive, Pluronic-g-poly(acrylic acid) copolymers in-situ gels for ophthalmic drug delivery: Rheology, in-vitro drug release, and in vivo resident property.Drug Dev. Ind. Pharm.200834325826610.1080/03639040701580622 18363141
    [Google Scholar]
  55. DestruelP.L. ZengN. SeguinJ. DouatS. RosaF. Brignole-BaudouinF. DufaÿS. Dufaÿ-WojcickiA. MauryM. MignetN. BoudyV. Novel in-situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time.Int. J. Pharm.202057411873410.1016/j.ijpharm.2019.118734 31705970
    [Google Scholar]
  56. MalektajH. DrozdovA.D. deClaville ChristiansenJ. Swelling of homogeneous alginate gels with multi-stimuli sensitivity.Int. J. Mol. Sci.2023246506410.3390/ijms24065064 36982139
    [Google Scholar]
  57. JainD. Newer trends in In-situ gelling systems for controlled ocular drug delivery.J. Anal. Pharm. Res.20162310.15406/japlr.2016.02.00022
    [Google Scholar]
  58. ČernohlávekM. BrandejsováM. ŠtěpánP. VagnerováH. HermannováM. KopeckáK. KulhánekJ. NečasD. VrbkaM. VelebnýV. Huerta-AngelesG. Insight into the lubrication and adhesion properties of hyaluronan for ocular drug delivery.Biomolecules20211110143110.3390/biom11101431 34680064
    [Google Scholar]
  59. HuynhA. PrieferR. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology.Carbohydr. Res.202048910795010.1016/j.carres.2020.107950 32070808
    [Google Scholar]
  60. JeongW. HongJ. JungM. JangM. AnS. JoT. KwonS. SonD. Therapeutic effects of amnion-conjugated chitosan-alginate membranes on diabetic wounds in an induced diabetic swine model: An in vitro and in vivo study.Arch. Plast. Surg.202249225826510.1055/s‑0042‑1744429 35832677
    [Google Scholar]
  61. DestruelP.L. ZengN. MauryM. MignetN. BoudyV. In vitro and in vivo evaluation of in-situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond.Drug Discov. Today201722463865110.1016/j.drudis.2016.12.008 28017837
    [Google Scholar]
  62. PatelP. PatelG. Formulation, ex-vivo and preclinical in-vivo studies of combined ph and ion-sensitive ocular sustained in-situ hydrogel of timolol maleate for the treatment of glaucoma.Biointerface Res. Appl. Chem.20201118242826510.33263/BRIAC111.82428265
    [Google Scholar]
  63. WancuraM. NkansahA. RobinsonA. ToubbehS. TalankerM. JonesS. Cosgriff-HernandezE. PEG-based hydrogel coatings: Design tools for biomedical applications.Ann. Biomed. Eng.20245271804181510.1007/s10439‑023‑03154‑9 36774427
    [Google Scholar]
  64. AnnalaA. IlochonwuB.C. WilbieD. SadeghiA. HenninkW.E. VermondenT. Self-healing thermosensitive hydrogel for sustained release of dexamethasone for ocular therapy.ACS Polym. Au20233111813110.1021/acspolymersau.2c00038 36785837
    [Google Scholar]
  65. ToaderG. PodaruA.I. DiaconA. RusenE. MocanuA. BrincoveanuO. AlexandruM. ZorilaF.L. BacalumM. AlbotaF. GavrilaA.M. TricaB. RotariuT. IonitaM. IstrateM. Nanocomposite hydrogel films based on sequential interpenetrating polymeric networks as drug delivery platforms.Polymers20231515317610.3390/polym15153176 37571071
    [Google Scholar]
  66. ZhangX.P. SunJ.G. YaoJ. ShanK. LiuB.H. YaoM.D. GeH.M. JiangQ. ZhaoC. YanB. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy.Biomed. Pharmacother.20181071056106310.1016/j.biopha.2018.08.092 30257317
    [Google Scholar]
  67. DasB. ChattopadhyayD. RanaD. The gamut of perspectives, challenges, and recent trends for in-situ hydrogels: A smart ophthalmic drug delivery vehicle.Biomater. Sci.20208174665469110.1039/D0BM00532K 32760957
    [Google Scholar]
  68. JumelleC. GholizadehS. AnnabiN. DanaR. Advances and limitations of drug delivery systems formulated as eye drops.J. Control. Release202032112210.1016/j.jconrel.2020.01.057 32027938
    [Google Scholar]
  69. MatanovićM.R. KristlJ. GrabnarP.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications.Int. J. Pharm.20144721-226227510.1016/j.ijpharm.2014.06.029 24950367
    [Google Scholar]
  70. ShelleyH. GrantM. SmithF.T. AbarcaE.M. Jayachandra BabuR. Improved ocular delivery of nepafenac by cyclodextrin complexation.AAPS Pharm Sci Tech20181962554256310.1208/s12249‑018‑1094‑0 29948988
    [Google Scholar]
  71. MoiseevR.V. SteeleF. KhutoryanskiyV.V. Polyaphron formulations stabilised with different water-soluble polymers for ocular drug delivery.Pharmaceutics202214592610.3390/pharmaceutics14050926 35631511
    [Google Scholar]
  72. AbdelmohsenH.A.M. CopelandN.A. HardyJ.G. Light-responsive biomaterials for ocular drug delivery.Drug Deliv. Transl. Res.20231382159218210.1007/s13346‑022‑01196‑5 35751001
    [Google Scholar]
  73. LiuZ. LiJ. NieS. LiuH. DingP. PanW. Study of an alginate/HPMC-based in-situ gelling ophthalmic delivery system for gatifloxacin.Int. J. Pharm.20063151-2121710.1016/j.ijpharm.2006.01.029 16616442
    [Google Scholar]
  74. ThangN.H. ChienT.B. CuongD.X. Polymer-based hydrogels applied in drug delivery: An overview.Gels20239752310.3390/gels9070523 37504402
    [Google Scholar]
  75. PanZ. FuQ.Q. WangM.H. GaoH.L. DongL. ZhouP. ChengD.D. ChenY. ZouD.H. HeJ.C. FengX. YuS.H. Designing nanohesives for rapid, universal, and robust hydrogel adhesion.Nat. Commun.2023141537810.1038/s41467‑023‑40753‑5 37666848
    [Google Scholar]
  76. PorfiryevaN.N. MoustafineR.I. KhutoryanskiyV.V. PEGylated systems in pharmaceutics.Polym. Sci. Ser. C2020621627410.1134/S181123822001004X
    [Google Scholar]
  77. CheluM. MusucA.M. Polymer gels: Classification and recent developments in biomedical applications.Gels20239216110.3390/gels9020161 36826331
    [Google Scholar]
  78. PerticiV. Pin-BarreC. RiveraC. PellegrinoC. LaurinJ. GigmesD. TrimailleT. Degradable and injectable hydrogel for drug delivery in soft tissues.Biomacromolecules201920114916310.1021/acs.biomac.8b01242 30376309
    [Google Scholar]
  79. LiJ. LiuH. LiuL. CaiC. XinH. LiuW. Design and evaluation of a brinzolamide drug-resin in-situ thermosensitive gelling system for sustained ophthalmic drug delivery.Chem. Pharm. Bull. (Tokyo)201462101000100810.1248/cpb.c14‑00451 25099146
    [Google Scholar]
  80. Al KhatebK. OzhmukhametovaE.K. MussinM.N. SeilkhanovS.K. RakhypbekovT.K. LauW.M. KhutoryanskiyV.V. In-situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery.Int. J. Pharm.20165021-2707910.1016/j.ijpharm.2016.02.027 26899977
    [Google Scholar]
  81. MorsiN. GhorabD. RefaiH. TebaH. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive In-situ gel for prolonged ocular delivery.Int. J. Pharm.20165061-2576710.1016/j.ijpharm.2016.04.021 27091293
    [Google Scholar]
  82. SawantD. DandagiP.M. GadadA.P. Formulation and evaluation of sparfloxacin emulsomes-loaded thermosensitive in-situ gel for ophthalmic delivery.J. Sol-Gel Sci. Technol.201677365466510.1007/s10971‑015‑3897‑8
    [Google Scholar]
  83. LihongW. XinC. YongxueG. YiyingB. GangC. Thermoresponsive ophthalmic poloxamer/tween/carbopol in-situ gels of a poorly water-soluble drug fluconazole: Preparation and in-vitro - in vivo evaluation.Drug Dev. Ind. Pharm.201440101402141010.3109/03639045.2013.828221 23944837
    [Google Scholar]
  84. GadadA.P. WadklarP.D. DandghiP. PatilA. Thermosensitive in-situ gel for ocular delivery of Lomefloxacin.Indian J. Pharm. Educ. Res.201650296105
    [Google Scholar]
  85. QianY. WangF. LiR. ZhangQ. XuQ. Preparation and evaluation of in-situ gelling ophthalmic drug delivery system for methazolamide.Drug Dev. Ind. Pharm.201036111340134710.3109/03639041003801893 20849349
    [Google Scholar]
  86. AsasutjaritR. ThanasanchokpibullS. FuongfuchatA. VeeranondhaS. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in-situ gels.Int. J. Pharm.20114111-212813510.1016/j.ijpharm.2011.03.054 21459137
    [Google Scholar]
  87. AmmarH.O. SalamaH.A. GhorabM. MahmoudA.A. Development of dorzolamide hydrochloride in-situ gel nanoemulsion for ocular delivery.Drug Dev. Ind. Pharm.201036111330133910.3109/03639041003801885 20545523
    [Google Scholar]
  88. WuH. LiuZ. PengJ. LiL. LiN. LiJ. PanH. Design and evaluation of baicalin-containing in-situ pH-triggered gelling system for sustained ophthalmic drug delivery.Int. J. Pharm.20114101-2314010.1016/j.ijpharm.2011.03.007 21397671
    [Google Scholar]
  89. MakwanaS.B. PatelV.A. ParmarS.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.Results Pharma Sci.201661610.1016/j.rinphs.2015.06.001 26949596
    [Google Scholar]
  90. UpadhayayP. KumarM. PathakK. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity.Iran. J. Pharm. Res.2016151322
    [Google Scholar]
  91. GuptaS. VyasS.P. Carbopol/chitosan based pH triggered in-situ gelling system for ocular delivery of timolol maleate.Sci. Pharm.201078495997610.3797/scipharm.1001‑06 21179328
    [Google Scholar]
  92. PangX. LiJ. PiJ. QiD. GuoP. LiN. WuY. LiuZ. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits.Pharm. Dev. Technol.201823323123910.1080/10837450.2017.1328693 28488447
    [Google Scholar]
  93. KanoujiaJ. SonkerK. PandeyM. KymonilK.M. SarafS.A. Formulation and characterization of a novel pH-triggered in-situ gelling ocular system containing Gatifloxacin.Int. Curr. Pharm. J.197013434910.3329/icpj.v1i3.9661
    [Google Scholar]
  94. MohammadinejadR. MalekiH. LarrañetaE. FajardoA.R. NikA.B. ShavandiA. SheikhiA. GhorbanpourM. FarokhiM. GovindhP. CabaneE. AziziS. ArefA.R. MozafariM. MehraliM. ThomasS. ManoJ.F. MishraY.K. ThakurV.K. Status and future scope of plant-based green hydrogels in biomedical engineering.Appl. Mater. Today20191621324610.1016/j.apmt.2019.04.010
    [Google Scholar]
  95. ShirasakiY. Molecular design for enhancement of ocular penetration.J. Pharm. Sci.20089772462249610.1002/jps.21200 17918725
    [Google Scholar]
  96. Fernández-FerreiroA. Fernández BargielaN. VarelaM.S. MartínezM.G. PardoM. Piñeiro CesA. MéndezJ.B. BarciaM.G. LamasM.J. Otero-EspinarF. Cyclodextrin-polysaccharide-based, in-situ-gelled system for ocular antifungal delivery.Beilstein J. Org. Chem.2014102903291110.3762/bjoc.10.308 25550757
    [Google Scholar]
  97. MorsiN. IbrahimM. RefaiH. El SorogyH. Nanoemulsion-based electrolyte triggered in-situ gel for ocular delivery of acetazolamide.Eur. J. Pharm. Sci.201710430231410.1016/j.ejps.2017.04.013 28433750
    [Google Scholar]
  98. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Promising ion-sensitive in-situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.Int. J. Pharm.20134431-229330510.1016/j.ijpharm.2012.12.049 23333217
    [Google Scholar]
  99. RupenthalI.D. AlanyR.G. GreenC.R. Ion-activated in-situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface.Mol. Pharm.2011862282229010.1021/mp200140e 21985532
    [Google Scholar]
  100. KhanN. AqilM. ImamS.S. AliA. Development and evaluation of a novel in-situ gel of sparfloxacin for sustained ocular drug delivery: In-vitro and ex vivo characterization.Pharm. Dev. Technol.201520666266910.3109/10837450.2014.910807 24754411
    [Google Scholar]
  101. YuS. ZhangX. TanG. TianL. LiuD. LiuY. YangX. PanW. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery.Carbohydr. Polym.201715520821710.1016/j.carbpol.2016.08.073 27702506
    [Google Scholar]
  102. AhmedB. JaiswalS. NaryalS. ShahR.M. AlanyR.G. KaurI.P. In-situ gelling systems for ocular drug delivery.J. Control. Release2024371678410.1016/j.jconrel.2024.05.031 38768662
    [Google Scholar]
  103. AqilM. GuptaH. KharR.K. AliA. BhatnagarA. MittalG. An alternative in-situ gel-formulation of levofloxacin eye drops for prolong ocular retention.J. Pharm. Bioallied Sci.20157191410.4103/0975‑7406.149810 25709330
    [Google Scholar]
  104. BaşaranB. BozkirA. Thermosensitive and pH induced In-situ ophthalmic gelling system for ciprofloxacin hydrochloride: Hydroxypropyl-beta-cyclodextrin complex.Acta Pol. Pharm.20136961137
    [Google Scholar]
  105. DekaM. AhmedA.B. ChakrabortyJ. Development, evaluation and characteristics of ophthalmic in-situ gel system: A review.Int. J. Curr. Pharm. Res.2019114475310.22159/ijcpr.2019v11i4.34949
    [Google Scholar]
  106. BuwaldaS.J. VermondenT. HenninkW.E. Hydrogels for therapeutic delivery: Current developments and future directions.Biomacromolecules201718231633010.1021/acs.biomac.6b01604 28027640
    [Google Scholar]
  107. AqilM. GuptaH. KharR. AliA. BhatnagarA. MittalG. Nanoparticles laden In-situ gel for sustained ocular drug delivery.J. Pharm. Bioallied Sci.20135216216510.4103/0975‑7406.111824 23833523
    [Google Scholar]
  108. GuidiL. CasconeM.G. RoselliniE. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives.Heliyon2024105e2661610.1016/j.heliyon.2024.e26616 38434257
    [Google Scholar]
  109. KalariaV.J. SaisivamS. AlshishaniA. Aljariri AlhesanJ.S. ChakrabortyS. RahamathullaM. Design and evaluation of in-situ gel eye drops containing nanoparticles of Gemifloxacin Mesylate.Drug Deliv.2023301218518010.1080/10717544.2023.2185180 36876464
    [Google Scholar]
  110. KolawoleO.M. CookM.T. In-situ gelling drug delivery systems for topical drug delivery.Eur. J. Pharm. Biopharm.2023184364910.1016/j.ejpb.2023.01.007 36642283
    [Google Scholar]
  111. ZengY. ChenJ. LiY. HuangJ. HuangZ. HuangY. PanX. WuC. Thermo-sensitive gel in glaucoma therapy for enhanced bioavailability: In-vitro characterization, in vivo pharmacokinetics and pharmacodynamics study.Life Sci.2018212808610.1016/j.lfs.2018.09.050 30268857
    [Google Scholar]
  112. Sánchez-GonzálezJ.M. Silva-VigueraC. Sánchez-GonzálezM.C. Capote-PuenteR. De-Hita-CantalejoC. Ballesteros-SánchezA. Ballesteros-DuránL. García-RomeraM.C. Gutiérrez-SánchezE. Tear film stabilization and symptom improvement in dry eye disease: The role of hyaluronic acid and trehalose eyedrops versus carmellose sodium.J. Clin. Med.20231220664710.3390/jcm12206647 37892784
    [Google Scholar]
  113. AlsaidanO.A. ZafarA. YasirM. AlzareaS.I. AlqinyahM. KhalidM. Development of Ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Optimization, in-vitro characterization, KLo permeation, and antimicrobial study.Gels202281168710.3390/gels8110687 36354595
    [Google Scholar]
  114. ShelleyH. Rodriguez-GalarzaR.M. DuranS.H. AbarcaE.M. BabuR.J. In-situ gel formulation for enhanced ocular delivery of nepafenac.J. Pharm. Sci.2018107123089309710.1016/j.xphs.2018.08.013 30170009
    [Google Scholar]
/content/journals/aia/10.2174/0122113525361929250127060448
Loading
/content/journals/aia/10.2174/0122113525361929250127060448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test