Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Introduction

Sesquiterpene coumarins are a unique class of natural compounds with a wide range of biological activities. These C15 terpenes are connected by ether or carbon-carbon bonds to coumarin derivatives. Sesquiterpene coumarins that include a 7-hydroxylcoumarin (umbelliferone) moiety have significant antiviral properties. The natural flexibility of these compounds reduces the likelihood of developing resistance, which is often seen in viruses due to high mutation rates.

Objective

The lessons learned from the coronavirus pandemic experience emphasize the importance of preparedness for future viral outbreaks in the medical community. Consequently, fast and reliable assessment methods, such as techniques, are crucial in drug discovery.

Methods

In this study, we used studies to evaluate the potential antiviral effects of various sesquiterpene coumarins.

Results

The binding free energy to the spike protein of SARS-CoV-2 suggested that 5′-hydroxyumbelliprenin (), conferol (), 8′-acetoxy-5′-hydroxyumbelliprenin (), and Sanandajine () could be promising antiviral candidates.

Conclusion

These compounds have unique physicochemical characteristics and occupy distinct chemical spaces compared to synthetic libraries; therefore, the criteria for drug-likeness need to be adjusted for this series of compounds.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525360098241219094701
2025-01-29
2025-10-30
Loading full text...

Full text loading...

References

  1. ZumlaA. ChanJ.F.W. AzharE.I. HuiD.S.C. YuenK.Y. Coronaviruses — drug discovery and therapeutic options.Nat. Rev. Drug Discov.201615532734710.1038/nrd.2015.37 26868298
    [Google Scholar]
  2. ZakiA.M. BoheemenV.S. BestebroerT.M. OsterhausA.D.M.E. FouchierR.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N. Engl. J. Med.2012367191814182010.1056/NEJMoa1211721 23075143
    [Google Scholar]
  3. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. A novel coronavirus from patients with Pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017
    [Google Scholar]
  4. World Health OrganizationCoronavirus disease 2019 (COVID-19): Situation report, 73.Available from: https://iris.who.int/handle/10665/331686 202013
  5. PeirisJ.S.M. LaiS.T. PoonL.L.M. GuanY. YamL.Y.C. LimW. NichollsJ. YeeW.K.S. YanW.W. CheungM.T. ChengV.C.C. ChanK.H. TsangD.N.C. YungR.W.H. NgT.K. YuenK.Y. Coronavirus as a possible cause of severe acute respiratory syndrome.Lancet200336193661319132510.1016/S0140‑6736(03)13077‑2 12711465
    [Google Scholar]
  6. GrootD.R.J. BakerS.C. BaricR.S. BrownC.S. DrostenC. EnjuanesL. FouchierR.A.M. GalianoM. GorbalenyaA.E. MemishZ.A. PerlmanS. PoonL.L.M. SnijderE.J. StephensG.M. WooP.C.Y. ZakiA.M. ZambonM. ZiebuhrJ. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group.J. Virol.201387147790779210.1128/JVI.01244‑13 23678167
    [Google Scholar]
  7. ChenY. LiL. SARS-CoV-2: Virus dynamics and host response.Lancet Infect. Dis.202020551551610.1016/S1473‑3099(20)30235‑8 32213336
    [Google Scholar]
  8. WuG. YanS. Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species.J. Mol. Model.200511181610.1007/s00894‑004‑0210‑0 15592899
    [Google Scholar]
  9. XiaS. ZhuY. LiuM. LanQ. XuW. WuY. YingT. LiuS. ShiZ. JiangS. LuL. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.Cell. Mol. Immunol.202017776576710.1038/s41423‑020‑0374‑2 32047258
    [Google Scholar]
  10. OanyA. PervinT. EmranA. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: An in silico approach.Drug Des. Devel. Ther.201481139114910.2147/DDDT.S67861 25187696
    [Google Scholar]
  11. SheikhpourM. The current recommended drugs and strategies for the treatment of coronavirus disease (COVID-19).Ther. Clin. Risk Manag.20201693394610.2147/TCRM.S262936 33116543
    [Google Scholar]
  12. MótyánJ.A. MahdiM. HoffkaG. TőzsérJ. Potential resistance of SARS-CoV-2 main protease (Mpro) against protease inhibitors: Lessons learned from HIV-1 protease.Int. J. Mol. Sci.2022237350710.3390/ijms23073507 35408866
    [Google Scholar]
  13. SungkanuparphS. SukasemC. ManosuthiW. WiboonchutikulS. PiyavongB. ChantratitaW. Tipranavir resistance associated mutations in protease inhibitor-naïve patients with HIV-1 subtype A/E infection.J. Clin. Virol.200843328428610.1016/j.jcv.2008.07.002 18701346
    [Google Scholar]
  14. BrogiS. RamalhoT.C. KucaK. FrancoM.J.L. ValkoM. In silico methods for drug design and discovery.Front Chem.2020861210.3389/fchem.2020.00612 32850641
    [Google Scholar]
  15. CaiY. ZhangJ. XiaoT. PengH. SterlingS.M. WalshR.M.Jr RawsonS. VollochR.S. ChenB. Distinct conformational states of SARS-CoV-2 spike protein.Science2020369651115861592
    [Google Scholar]
  16. BojadzicD. AlcazarO. ChenJ. ChuangS.T. CapchaC.J.M. ShehadehL.A. BuchwaldP. Small-molecule inhibitors of the coronavirus spike: ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2.ACS Infect. Dis.2021761519153410.1021/acsinfecdis.1c00070 33979123
    [Google Scholar]
  17. MathesonN.J. LehnerP.J. How does SARS-CoV-2 cause COVID-19?Science20203696503510511
    [Google Scholar]
  18. ButlerM.S. The role of natural product chemistry in drug discovery.J. Nat. Prod.200467122141215310.1021/np040106y 15620274
    [Google Scholar]
  19. ElfikyA.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell.J. Biomol. Struct. Dyn.202139931943203 32340551
    [Google Scholar]
  20. KaoR.Y. TsuiW.H.W. LeeT.S.W. TannerJ.A. WattR.M. HuangJ.D. HuL. ChenG. ChenZ. ZhangL. HeT. ChanK.H. TseH. ToA.P.C. NgL.W.Y. WongB.C.W. TsoiH.W. YangD. HoD.D. YuenK.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics.Chem. Biol.20041191293129910.1016/j.chembiol.2004.07.013 15380189
    [Google Scholar]
  21. MaldonadoG.P. AlvarengaN. EdwardsB.A. GiubiF.M.E. BarúaJ.E. RodríguezR.M.C. RifoS.R. EcheverríaV.F. LangjahrP. GonzálezC.G. SoteloP.H. Screening of natural products inhibitors of SARS-CoV-2 entry.Molecules2022275174310.3390/molecules27051743 35268843
    [Google Scholar]
  22. ChekeR.S. NarkhedeR.R. ShindeS.D. AmbhoreJ.P. JainP.G. Natural product emerging as potential SARS spike glycoproteins-ACE2 inhibitors to combat COVID-19 attributed by in-silico investigations.Biointerface Res. Appl. Chem.2021111062810639
    [Google Scholar]
  23. OanyA.R. MiaM. PervinT. JunaidM. HosenS.M.Z. MoniM.A. Design of novel viral attachment inhibitors of the spike glycoprotein (S) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) through virtual screening and dynamics.Int. J. Antimicrob. Agents202056610617710.1016/j.ijantimicag.2020.106177 32987103
    [Google Scholar]
  24. YangJ. PetitjeanS.J.L. KoehlerM. ZhangQ. DumitruA.C. ChenW. DerclayeS. VincentS.P. SoumillionP. AlsteensD. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor.Nat. Commun.2020111454110.1038/s41467‑020‑18319‑6 32917884
    [Google Scholar]
  25. GliszczyńskaA. BrodeliusP.E. Sesquiterpene coumarins.Phytochem. Rev.2012111779610.1007/s11101‑011‑9220‑6
    [Google Scholar]
  26. NeeseF. WennmohsF. BeckerU. RiplingerC. The ORCA quantum chemistry program package.J. Chem. Phys.20201522222410810.1063/5.0004608 32534543
    [Google Scholar]
  27. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  28. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  29. WangQ. ZhangY. WuL. NiuS. SongC. ZhangZ. LuG. QiaoC. HuY. YuenK.Y. WangQ. ZhouH. YanJ. QiJ. Structural and functional basis of SARS-CoV-2 entry by using human ACE2.Cell20201814894904.e910.1016/j.cell.2020.03.045 32275855
    [Google Scholar]
  30. AslR.N. KarimiA. EbadiA. The potential of natural product vs neurodegenerative disorders: In silico study of artoflavanocoumarin as BACE-1 inhibitor.Comput. Biol. Chem.20187730731710.1016/j.compbiolchem.2018.10.015 30445338
    [Google Scholar]
  31. AslR.N. SepehriS. EbadiA. MiriR. ShahabipourS. Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors.Struct. Chem.201526260762110.1007/s11224‑014‑0523‑2
    [Google Scholar]
  32. JakalianA. BushB.L. JackD.B. BaylyC.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I.Method. J. Comput. Chem.200021213214610.1002/(SICI)1096‑987X(20000130)21:2<132::AID‑JCC5>3.0.CO;2‑P
    [Google Scholar]
  33. EssmannU. PereraL. BerkowitzM.L. DardenT. LeeH. PedersenL.G. A smooth particle mesh Ewald method.J. Chem. Phys.1995103198577859310.1063/1.470117
    [Google Scholar]
  34. BerendsenH.J.C. PostmaJ.P.M. van.; Gunsteren, V.WF Molecular dynamics with coupling to an external bath.J. Chem. Phys.198481836843690
    [Google Scholar]
  35. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  36. BemisG.W. MurckoM.A. The properties of known drugs. 1. Molecular frameworks.J. Med. Chem.199639152887289310.1021/jm9602928 8709122
    [Google Scholar]
  37. LoveringF. BikkerJ. HumbletC. Escape from flatland: Increasing saturation as an approach to improving clinical success.J. Med. Chem.200952216752675610.1021/jm901241e 19827778
    [Google Scholar]
  38. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  39. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  40. KortemmeT. KimD.E. BakerD. Computational alanine scanning of protein-protein interfaces.Sci. STKE20042004219pl2pl210.1126/stke.2192004pl2 14872095
    [Google Scholar]
  41. WilliamsonG. KerimiA. Testing of natural products in clinical trials targeting the SARS-CoV-2 (COVID-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction.Biochem. Pharmacol.202017811412310.1016/j.bcp.2020.114123 32593613
    [Google Scholar]
  42. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  43. SmithM. SmithJ.C. Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface;ChemRxiv202010.26434/chemrxiv.11871402.v4
    [Google Scholar]
  44. SenathilakeK. SamarakoonS. TennekoonK. Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A drug repurposing approach.Preprints2020202003004210.20944/preprints202003.0042.v1
    [Google Scholar]
  45. MoorthyV. RestrepoH.A.M. PreziosiM.P. SwaminathanS. Data sharing for novel coronavirus (COVID-19).Bull. World Health Organ.202098315010.2471/BLT.20.251561 32132744
    [Google Scholar]
  46. CalligariP. BoboneS. RicciG. BocediA. Molecular investigation of SARS-CoV-2 proteins and their interactions with antiviral drugs.Viruses202012444510.3390/v12040445 32295237
    [Google Scholar]
  47. CaoB. WangY. WenD. LiuW. WangJ. FanG. RuanL. SongB. CaiY. WeiM. LiX. XiaJ. ChenN. XiangJ. YuT. BaiT. XieX. ZhangL. LiC. YuanY. ChenH. LiH. HuangH. TuS. GongF. LiuY. WeiY. DongC. ZhouF. GuX. XuJ. LiuZ. ZhangY. LiH. ShangL. WangK. LiK. ZhouX. DongX. QuZ. LuS. HuX. RuanS. LuoS. WuJ. PengL. ChengF. PanL. ZouJ. JiaC. WangJ. LiuX. WangS. WuX. GeQ. HeJ. ZhanH. QiuF. GuoL. HuangC. JakiT. HaydenF.G. HorbyP.W. ZhangD. WangC. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa2001282 32187464
    [Google Scholar]
  48. TrezzaA. IovinelliD. SantucciA. PrischiF. SpigaO. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors.Sci. Rep.20201011386610.1038/s41598‑020‑70863‑9 32807895
    [Google Scholar]
  49. HilgenfeldR. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design.FEBS J.2014281184085409610.1111/febs.12936 25039866
    [Google Scholar]
  50. BlackadarC.B. Historical review of the causes of cancer.World J. Clin. Oncol.201671548610.5306/wjco.v7.i1.54 26862491
    [Google Scholar]
/content/journals/aia/10.2174/0122113525360098241219094701
Loading
/content/journals/aia/10.2174/0122113525360098241219094701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test