Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Tuberculosis remains a global health concern, necessitating the exploration of novel therapeutic strategies. Multidrug-resistant and extensively drug-resistant strains of pose a growing challenge in tuberculosis treatment. Drug resistance can reduce the effectiveness of isoniazid, a commonly used first-line anti-tuberculosis drug, in treating tuberculosis. Silymarin, a flavonoid complex obtained from milk thistle, has drawn great interest owing to its rich anticancer, antioxidant, anti-inflammatory, and hepatoprotective properties. Recent studies have indicated that silymarin, when used with first-line anti-TB drugs such as isoniazid, may strengthen the treatment. This mini-review intends to assess the currently available evidence base and the extent to which it supports the use of silymarin as synergistic with isoniazid in the treatment of tuberculosis. We further elaborate on pharmacological activities and describe possible ways silymarin would exert an antibacterial action against , the causative microorganism of tuberculosis. Further analysis is conducted on , and clinical studies that contain information regarding the effectiveness and security of this drug combination. Finally, we consider the barriers, patterns, and contours connected with silymarin-isoniazid combination therapy development, silymarin justification dominance formulations, reliable doses, and necessary clinical trials to verify silymarin efficacy and safety in different categories of patients suffering from tuberculosis.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525357725250102112741
2025-01-21
2025-10-12
Loading full text...

Full text loading...

References

  1. Treatment of Tuberculosis American Thoracic Society, CDC, and Infectious Diseases Society of America.Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5211a1.htm 2003
  2. ParvezS. YadagiriG. GeddaM.R. SinghA. SinghO.P. VermaA. SundarS. MudavathS.L. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: An effective oral combination against experimental murine visceral leishmaniasis.Sci. Rep.20201011224310.1038/s41598‑020‑69276‑5 32699361
    [Google Scholar]
  3. Van DeunA. MaugA.K.J. SalimM.A.H. DasP.K. SarkerM.R. DaruP. RiederH.L. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis.Am. J. Respir. Crit. Care Med.2010182568469210.1164/rccm.201001‑0077OC 20442432
    [Google Scholar]
  4. IacobinoA. FattoriniL. GiannoniF. Drug-resistant tuberculosis 2020: Where we stand.Appl. Sci.2020106215310.3390/app10062153
    [Google Scholar]
  5. SinghM. SasiP. GuptaV.H. RaiG. AmarapurkarD.N. WangikarP.P. Protective effect of curcumin, silymarin and N -acetylcysteine on antitubercular drug-induced hepatotoxicity assessed in an in vitro model.Hum. Exp. Toxicol.201231878879710.1177/0960327111433901 22318308
    [Google Scholar]
  6. PalR. VaipheiK. SikanderA. SinghK. RanaS.V. Effect of garlic on isoniazid and rifampicin-induced hepatic injury in rats.World J. Gastroenterol.200612463663910.3748/wjg.v12.i4.636 16489682
    [Google Scholar]
  7. RanaS.V. AttriS. VaipheiK. PalR. AttriA. SinghK. Role of N-acetylcysteine in rifampicin-induced hepatic injury of young rats.World J. Gastroenterol.200612228729110.3748/wjg.v12.i2.287 16482631
    [Google Scholar]
  8. YanW. ZhengY. DouC. ZhangG. ArnaoutT. ChengW. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development.Mol. Biomed.2022314810.1186/s43556‑022‑00106‑y 36547804
    [Google Scholar]
  9. TolulopeD. JacksonG. CairaM. HammoudaA. Potentiometrie and spectroscopic study of isoniazid - an anti-tubercular drug.S. Afr. J. Chem.202276657110.17159/0379‑4350/2022/v76a10
    [Google Scholar]
  10. GilE. SweeneyN. BarrettV. Morris-JonesS. MillerR.F. JohnstonV.J. BrownM. Bedaquiline as treatment for disseminated nontuberculous mycobacteria infection in 2 patients co-infected with HIV.Emerg. Infect. Dis.202127394494810.3201/eid2703.202359 33622490
    [Google Scholar]
  11. RóżyckaD. Korycka-MachałaM. ŻaczekA. DziadekJ. GurdaD. Orlicka-PłockaM. WyszkoE. Biniek-AntosiakK. RypniewskiW. OlejniczakA.B. Novel isoniazid-carborane hybrids active in vitro against Mycobacterium tuberculosis.Pharmaceuticals2020131246510.3390/ph13120465 33333865
    [Google Scholar]
  12. FakuraziS. SharifudinS.A. ArulselvanP. Moringa oleifera hydroethanolic extracts effectively alleviate acetaminophen-induced hepatotoxicity in experimental rats through their antioxidant nature.Molecules20121778334835010.3390/molecules17078334 22781444
    [Google Scholar]
  13. LalM. GuptaD. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells.Discoveries201641e5610.15190/d.2016.3 32309577
    [Google Scholar]
  14. SieniawskaE. Maciejewska-TurskaM. ŚwiątekŁ. XiaoJ. Plant‐based food products for antimycobacterial therapy.eFood20201319921610.2991/efood.k.200418.001
    [Google Scholar]
  15. ChoiW. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents.J. Clin. Med.2017633010.3390/jcm6030030 28287416
    [Google Scholar]
  16. GhoderaoP. SanghaviS. BhaveT. KulkarniA.A. Drug-coated nanoparticles: The magic bullets for threatening diseases, with special reference to tuberculosis.Elsevier201910.1016/B978‑0‑12‑816913‑1.00003‑9
    [Google Scholar]
  17. YadavS. Primary isoniazid mono-resistant extrapulmonary tuberculosis presenting as cervical lymphadenitis: The world’s first case of its type.Cureus2023157e4193710.7759/cureus.41937 37588320
    [Google Scholar]
  18. MondoniM. SaderiL. SotgiuG. Novel treatments in multidrug-resistant tuberculosis.Curr. Opin. Pharmacol.20215910311510.1016/j.coph.2021.05.007 34186381
    [Google Scholar]
  19. BaskaranU.L. SabinaE.P. Clinical and experimental research in antituberculosis drug-induced hepatotoxicity: A review.J. Integr. Med.2017151273610.1016/S2095‑4964(17)60319‑4 28088257
    [Google Scholar]
  20. HackettE.S. TwedtD.C. GustafsonD.L. Milk thistle and its derivative compounds: A review of opportunities for treatment of liver disease.J. Vet. Intern. Med.2013271101610.1111/jvim.12002 23140176
    [Google Scholar]
  21. LeeJ.I. NarayanM. BarrettJ.S. Analysis and comparison of active constituents in commercial standardized silymarin extracts by liquid chromatography–electrospray ionization mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.200784519510310.1016/j.jchromb.2006.07.063 16942922
    [Google Scholar]
  22. SachanR.S. MistryV. DholariaM. RanaA. DevgonI. KarnwalA. Overcoming Mycobacterium tuberculosis drug resistance: Novel medications and repositioning strategies.ACS Omega2023836322443225710.1021/acsomega.3c02563
    [Google Scholar]
  23. Ebrahimpour koujan, S.; Gargari, B.P.; Mobasseri, M.; Valizadeh, H.; Asghari-Jafarabadi, M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial.Phytomedicine201522229029610.1016/j.phymed.2014.12.010 25765835
    [Google Scholar]
  24. Wah KheongC. Nik MustaphaN.R. MahadevaS. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis.Clin. Gastroenterol. Hepatol.2017151219401949.e810.1016/j.cgh.2017.04.016 28419855
    [Google Scholar]
  25. PushkarS. VarshneyV. PushkarP. SagarH.K. Novel approaches for the treatment of drug-resistant tuberculosis.Pharmacognosy Res.202315223524110.5530/pres.15.2.025
    [Google Scholar]
  26. ScribaT.J. DinkeleR. WarnerD.F. MizrahiV. Challenges in TB research.J. Exp. Med.202221912e2022133410.1084/jem.20221334 36326687
    [Google Scholar]
  27. SaukkonenJ.J. CohnD.L. JasmerR.M. SchenkerS. JerebJ.A. NolanC.M. PeloquinC.A. GordinF.M. NunesD. StraderD.B. BernardoJ. VenkataramananR. SterlingT.R. An official ATS statement: Hepatotoxicity of antituberculosis therapy.Am. J. Respir. Crit. Care Med.2006174893595210.1164/rccm.200510‑1666ST 17021358
    [Google Scholar]
  28. MetushiI. UetrechtJ. PhillipsE. Mechanism of isoniazid‐induced hepatotoxicity: Then and now.Br. J. Clin. Pharmacol.20168161030103610.1111/bcp.12885 26773235
    [Google Scholar]
  29. DartoisV.A. RubinE.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities.Nat. Rev. Microbiol.2022201168570110.1038/s41579‑022‑00731‑y 35478222
    [Google Scholar]
  30. TomiokaH. TatanoY. ShimizuT. SanoC. Clinical and basic studies on therapeutic efficacy of herbal medicines against mycobacterial infections.Medicines2019626710.3390/medicines6020067 31248144
    [Google Scholar]
  31. VinsovaJ. ImramovskyA. JampilekJ. MonrealJ. DolezalM. Recent advances on isoniazide derivatives.Antiinfect. Agents Med. Chem.200871123110.2174/187152108783329780
    [Google Scholar]
  32. MacNeilA. GlaziouP. SismanidisC. MaloneyS. FloydK. Global epidemiology of tuberculosis and progress toward achieving global targets — 2017.MMWR Morb. Mortal. Wkly. Rep.2019681126326610.15585/mmwr.mm6811a3 30897077
    [Google Scholar]
  33. ChalasaniN.P. HayashiP.H. BonkovskyH.L. NavarroV.J. LeeW.M. FontanaR.J. ACG Clinical Guideline: The diagnosis and management of idiosyncratic drug-induced liver injury.Am. J. Gastroenterol.2014109795096610.1038/ajg.2014.131 24935270
    [Google Scholar]
  34. RidkerP.M. EverettB.M. ThurenT. MacFadyenJ.G. ChangW.H. BallantyneC. FonsecaF. NicolauJ. KoenigW. AnkerS.D. KasteleinJ.J.P. CornelJ.H. PaisP. PellaD. GenestJ. CifkovaR. LorenzattiA. ForsterT. KobalavaZ. Vida-SimitiL. FlatherM. ShimokawaH. OgawaH. DellborgM. RossiP.R.F. TroquayR.P.T. LibbyP. GlynnR.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa1707914 28845751
    [Google Scholar]
  35. WuS. XiaY. LvX. TangS. YangZ. ZhangY. WangX. HuD. LiuF. YuanY. TuD. SunF. ZhouL. ZhanS. Preventive use of hepatoprotectors yields limited efficacy on the liver toxicity of anti‐tuberculosis agents in a large cohort of C hinese patients.J. Gastroenterol. Hepatol.201530354054510.1111/jgh.12717 25160904
    [Google Scholar]
  36. AguiarV.F.F. CarvalhoD.N.R. BendelaqueD.F.R. NevesL.N.A. SobrinhoC.R.O. RochaP.S.S. CostaR.E.A.R. NascimentoC.E.M. SouzaS.S.B. DerganM.R.A. BritoM.T.F.M. QuaresmaJ.A.S. Toxicological effects of antituberculosic chemotherapy in adults: An integrative literature review.J. Pharm. Res. Int.2021506510.9734/jpri/2021/v33i21A31368
    [Google Scholar]
  37. WadhwaK. PahwaR. KumarM. KumarS. SharmaP.C. SinghG. VermaR. MittalV. SinghI. KaushikD. JeandetP. Mechanistic insights into the pharmacological significance of silymarin.Molecules20222716532710.3390/molecules27165327 36014565
    [Google Scholar]
  38. KarimiG. VahabzadehM. LariP. RashediniaM. MoshiriM. “Silymarin”, a promising pharmacological agent for treatment of diseases.Iran. J. Basic Med. Sci.2011144308317
    [Google Scholar]
  39. GuJ. TangS.J. TanS.Y. WuQ. ZhangX. LiuC.X. An open-label, randomized and multi-center clinical trial to evaluate the efficacy of Silibinin in preventing drug-induced liver injury.Int. J. Clin. Exp. Med.20158343204327
    [Google Scholar]
  40. TostmannA. BoereeM.J. AarnoutseR.E. De LangeW.C.M. Van Der VenA.J.A.M. DekhuijzenR. Antituberculosis drug‐induced hepatotoxicity: Concise up‐to‐date review.J. Gastroenterol. Hepatol.200823219220210.1111/j.1440‑1746.2007.05207.x 17995946
    [Google Scholar]
  41. ShriramR.G. MoinA. AlotaibiH.F. KhafagyE.S. Al SaqrA. Abu LilaA.S. CharyuluR.N. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin.Pharmaceuticals202215779010.3390/ph15070790 35890088
    [Google Scholar]
  42. KoltaiT FliegelL. Role of silymarin in cancer treatment: Facts, hypotheses, and questions.J Evid Based Integr Med2022272515690X21106882610.1177/2515690X211068826
    [Google Scholar]
  43. BijakM. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism.Molecules20172211194210.3390/molecules22111942 29125572
    [Google Scholar]
  44. JouJ.H. MuirA.J. HepatitisC. Hepatitis C.Ann. Intern. Med.200814811ITC6-110.7326/0003‑4819‑148‑11‑200806030‑01006 18519925
    [Google Scholar]
  45. DemirorenK. BasunluM.T. ErtenR. CoklukE. A comparison of the effects of thymoquinone, silymarin and N-acetylcysteine in an experimental hepatotoxicity.Biomed. Pharmacother.20181061705171210.1016/j.biopha.2018.07.125 30119245
    [Google Scholar]
  46. ChakrabortyD. BatabyalS. GanusovV.V. A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis.Front. Appl. Math. Stat.202410135537310.3389/fams.2024.1355373
    [Google Scholar]
  47. JabiniR. JaafariM. Vahdati HasaniF. GhazizadehF. KhamesipourA. KarimiG. Effects of combined therapy with silymarin and glucantime on leishmaniasis induced by Leishmania major in BALB/c mice.Drug Res.201465311912410.1055/s‑0034‑1370914 24623031
    [Google Scholar]
  48. Di CostanzoA. AngelicoR. Drug delivery strategies for poorly water-soluble silymarin.202010.37247/PAMB.1.2020.28
    [Google Scholar]
  49. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  50. DaraY. VolcaniD. ShahK. ShinK. VenketaramanV. Potentials of host-directed therapies in tuberculosis management.J. Clin. Med.201988116610.3390/jcm8081166 31382631
    [Google Scholar]
  51. JenksJ.D. SalzerH.J.F. PrattesJ. KrauseR. BuchheidtD. HoeniglM. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: Design, development, and place in therapy.Drug Des. Devel. Ther.2018121033104410.2147/DDDT.S145545 29750016
    [Google Scholar]
  52. MatsunagaY. SonoyamaT. CasanovaL. NagataT.D. EcholsR. De GregorioF. OguraE. PortsmouthS. 1292. Safety profile of the novel siderophore cephalosporin cefiderocol in randomized phase 2 and phase 3 clinical studies of serious gram-negative infections.Open Forum Infect. Dis.20207Suppl. 1S661S66210.1093/ofid/ofaa439.1475
    [Google Scholar]
  53. StoevS.D. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses.Front. Nutr.202411133577910.3389/fnut.2024.1335779 38450227
    [Google Scholar]
  54. JaeschkeH. VisschersR.G.J. DuanL. AkakpoJ.Y. JaeschkeH. Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: Current understanding and future perspectives.J. Clin. Transl. Res.2018417510010.18053/jctres.04.201801.005 30873497
    [Google Scholar]
  55. RoloA. OliveiraP.J. MorenoA.J. PalmeiraC.M. Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC.Hepatol. Res.200326321722410.1016/S1386‑6346(03)00108‑6 12850694
    [Google Scholar]
  56. MerleC.S. FieldingK. SowO.B. GninafonM. LoM.B. MthiyaneT. OdhiamboJ. AmukoyeE. BahB. KassaF. N’DiayeA. RustomjeeR. de JongB.C. HortonJ. PerronneC. SismanidisC. LapujadeO. OlliaroP.L. LienhardtC. A four-month gatifloxacin-containing regimen for treating tuberculosis.N. Engl. J. Med.2014371171588159810.1056/NEJMoa1315817 25337748
    [Google Scholar]
  57. Rodríguez-FloresE.M. Mata-EspinosaD. Barrios-PayanJ. Marquina-CastilloB. Castañón-ArreolaM. Hernández-PandoR. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies.PLoS One2019145e021745710.1371/journal.pone.0217457 31145751
    [Google Scholar]
  58. FebrizaA. IdrusH.H. KasimV.N. Exploring the role of cathelicidin antimicrobial peptide, toll-like receptor 4, and HMGB-1 in bacterial infection.Antiinfect. Agents2024223e11012422552510.2174/0122113525284634231222071749
    [Google Scholar]
  59. KatinasJ. EpplinR. HamakerC. JonesM.A. Sulfonamides as inhibitors of Leishmania – Potential new treatments for leishmaniasis.Antiinfect. Agents2017151576210.2174/2211352515666170216143401 29399442
    [Google Scholar]
  60. KomalN. PatilN. SinghA. Mutations unveiled: Navigating the ever-changing landscape of SARS-CoV-2 in the COVID-19 Saga.Antiinfect. Agents20242210.2174/0122113525303969240624071851
    [Google Scholar]
  61. TaoL. QuX. ZhangY. SongY. ZhangS. Prophylactic therapy of silymarin (milk thistle) on antituberculosis drug-induced liver injury: A meta-analysis of randomized controlled trials.Can. J. Gastroenterol. Hepatol.2019201911110.1155/2019/3192351 30733935
    [Google Scholar]
  62. GillessenA. SchmidtH.H.J. Silymarin as supportive treatment in liver diseases: A narrative review.Adv. Ther.20203741279130110.1007/s12325‑020‑01251‑y 32065376
    [Google Scholar]
  63. TalebiA. SoltaniR. KhorvashF. JouabadiS.M. The effectiveness of silymarin in the prevention of anti-tuberculosis drug-induced hepatotoxicity: A randomized controlled clinical trial.Int. J. Prev. Med.20231414810.4103/ijpvm.ijpvm_81_22 37351038
    [Google Scholar]
  64. AragawM. DeguS. AbebeA. AbebayehuM. BedaneK.G. BisratD. Synthesis, antibacterial activity and in silico study of 1-(2-ethyl acetate)- 2-styryl 5-nitroimidazole derivatives.Antiinfect. Agents20242210.2174/0122113525297723240513114228
    [Google Scholar]
  65. AliM. AbidO.U.R. RehmanW. ShahidM. Cefradine schiff bases and their metal salts as potential anti-infective agents.Antiinfect. Agents20242210.2174/0122113525303362240429092531
    [Google Scholar]
  66. MohammedA.G. TadesseM.G. BachhetiR.K. BayehY. AshebrT.G. Isolation, characterization and antibacterial activity study of bioactive compounds from leaves of Cyphostemma cyphopetalum.Antiinfect. Agents20242210.2174/0122113525306978240520053843
    [Google Scholar]
  67. UshusM.J.P. KumarK.S. ShilpaV.P. KotakondaM. KallungalS.M. PeriyasamyB. Bioprospecting antibacterial properties of fungi isolated from kakinada sea coast and eucalyptus foliage.Antiinfect. Agents20242210.2174/0122113525315717240513051550
    [Google Scholar]
  68. ParasharA.K. Synthesis and characterization of temozolomide loaded theranostic quantum dots for the treatment of brain glioma.J. Med. Pharm. Allied Sci.20211032778278210.22270/jmpas.v10i3.1073
    [Google Scholar]
  69. ParasharA.K. PatelP. GuptaA.K. JainN.K. KurmiB.D. Synthesis, characterization and in vivo evaluation of pegylated ppi dendrimer for safe and prolonged delivery of insulin.Drug Deliv. Lett.20199324826310.2174/2210303109666190401231920
    [Google Scholar]
  70. ParasharA.K. Synthesis and characterization of ligand anchored poly propyleneiminedendrimers for the treatment of brain glioma.J. Med. Pharm. Allied Sci.20211032784278910.22270/jmpas.v10i3.1084
    [Google Scholar]
  71. KimS.H. KimY. Big data research on severe asthma.Tuberc. Respir. Dis.202487321322010.4046/trd.2023.0186 38443148
    [Google Scholar]
  72. KimS.H. MoonJ.Y. MinK.H. LeeH. Proposed Etiotypes for COPD: Controversial issues.Tuberc. Respir. Dis.202487322123310.4046/trd.2023.0194 38317417
    [Google Scholar]
  73. SinD.D. What single cell RNA sequencing has taught us about chronic obstructive pulmonary disease.Tuberc. Respir. Dis.202487325226010.4046/trd.2024.000138369875
    [Google Scholar]
/content/journals/aia/10.2174/0122113525357725250102112741
Loading
/content/journals/aia/10.2174/0122113525357725250102112741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test