Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Herbal medicines have earned a timeless place in healthcare, valued for their biocompatibility and widespread use in treating cancer and related conditions. , widely recognized as white leadwort or doctorbush, holds a prominent place in traditional medicine systems worldwide, revered for its diverse therapeutic properties. This widespread use, however, coupled with unsustainable harvesting practices, has raised concerns about the plant's long-term survival in its natural habitat. Their enduring presence is particularly evident in countries like India, Pakistan, Bangladesh, Sri Lanka, and Australia, where they are deeply rooted in ethnomedical traditions. stands out as a rich source of bioactive compounds, including naphthoquinones, flavonoids, alkaloids, and terpenoids, with plumbagin identified as a key driver of its medicinal properties. Plumbagin exhibits a remarkable pharmacological profile, demonstrating significant efficacy as an anticancer, antidiabetic, antimalarial, and antimicrobial agent, making it a promising candidate for drug development. The literature reveals that the root and root bark also have a wider claim in traditional medicines against various diseases as a memory enhancer, anti-inflammatory, wound healing, anti-infertility, blood coagulation, and anti-oxidant activities. This review provides a comprehensive overview of , encompassing its traditional uses, phytochemical composition, and the pharmacological activities of its key bioactive constituents, with a particular focus on plumbagin. We delve into the scientific evidence supporting its therapeutic applications, highlighting its potential in treating a wide range of diseases. Furthermore, we discuss the progress made in developing sustainable production methods for plumbagin for medicinal purposes from .

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525356076250103064301
2025-01-23
2025-10-12
Loading full text...

Full text loading...

References

  1. OcanM. LoyceN. OjiamboK.O. KinengyereA.A. ApunyoR. ObukuE.A. Efficacy of antimalarial herbal medicines used by communities in malaria affected regions globally: A protocol for systematic review and evidence and gap map.BMJ Open2023137e06977110.1136/bmjopen‑2022‑069771 37419642
    [Google Scholar]
  2. ChettriU. KumariS. A list of medicinally important plants of Sikkim Himalayan region, India.J. Med. Plants Stud.202194242710.22271/plants.2021.v9.i4a.1307
    [Google Scholar]
  3. RajaiahE. SingisalaN.R. Antibacterial and anti fungal efficacy of some medicinal plants used in Indian herbal medicine.J. Med. Plants Stud.2022101364210.22271/plants.2022.v10.i1a.1361
    [Google Scholar]
  4. ChoudharyS. KauravH. ChaudharyG. Citraka (Plumbago zeylanica): A potential rejuvenator.Int. J. Res. Appl. Sci. Biotechnol.20218220221210.31033/ijrasb.8.2.26
    [Google Scholar]
  5. MaroyiA. A synthesis and review of medicinal uses, phytochemistry and biological activities of Markhamia zanzibarica.Int. J. Res. Pharm. Sci.20201145985599310.26452/ijrps.v11i4.3260
    [Google Scholar]
  6. NaveenY.P. RupiniG.D. AhmedF. UroojA. Pharmacological effects and active phytoconstituents of Swietenia mahagoni: A review.J. Integr. Med.2014122869310.1016/S2095‑4964(14)60018‑2 24666674
    [Google Scholar]
  7. DashoraA. RathoreK. RajS. SharmaK. Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen.Biochem. Biophys. Rep.20223110132010132010.1016/j.bbrep.2022.101320 36032398
    [Google Scholar]
  8. BodedeO. PrinslooG. Ethnobotany, phytochemistry and pharmacological significance of the genus Bulbine (Asphodelaceae).J. Ethnopharmacol.202026011298611298610.1016/j.jep.2020.112986 32492493
    [Google Scholar]
  9. KlauM.E. RohaetiE. RafiM. ArtikaM. AmbarsariL. NurcholisW. Metabolite profiling of Curcuma zanthorrhiza varieties grown in different regions using UHPLC-Q-Orbitrap-HRMS and chemometrics analysis.Biointerface Res. Appl. Chem.20221312610.33263/BRIAC131.026
    [Google Scholar]
  10. TusharB. BasakS. SarmaG.C. RanganL. Ethnomedical uses of Zingiberaceous plants of Northeast India.J. Ethnopharmacol.2010132128629610.1016/j.jep.2010.08.032 20727402
    [Google Scholar]
  11. ShuklaB. SaxenaS. UsmaniS. KushwahaP. Phytochemistry and pharmacological studies of Plumbago zeylanica L.: A medicinal plant review.Clinical Phytoscience2021713410.1186/s40816‑021‑00271‑7
    [Google Scholar]
  12. ChumbhaleD.S. KhyadeM.S. Pharmacognostic evaluation and development of quality control parameters for root of Abelmoschus manihot (L.).Medik. Pharmacognosy Res.202215110111110.5530/097484900263
    [Google Scholar]
  13. Plumbagospecies. Secondary Metabolites of Medicinal PlantsWiley202086287210.1002/9783527825578.c02‑69
    [Google Scholar]
  14. SundariB.K.R. TelapoluS. DwarakanathB.S. ThyagarajanS.P. Cytotoxic and antioxidant effects in various tissue extracts of Plumbago zeylanica: Implications for anticancer potential.Pharmacogn. J.20179570671210.5530/pj.2017.5.111
    [Google Scholar]
  15. EggliU. GiorgettaM. Flowering phenology and observations on the pollination biology of south American cacti. 1. Denmoza rhodacantha.Haseltonia20152031210.2985/026.020.0103
    [Google Scholar]
  16. SeguraL. JaureguiA. MontaltiD. First record of Crataegus monogyna Jacq. (Rosales: Rosaceae) in Buenos Aires province, Argentina.Check List20141051167116910.15560/10.5.1167
    [Google Scholar]
  17. BiessyA. FilionM. Phloroglucinol derivatives in plant-beneficial Pseudomonas spp.: Biosynthesis, regulation, and functions.Metabolites202111318210.3390/metabo11030182 33804595
    [Google Scholar]
  18. RoyA. Plumbagin: A potential anti-cancer compound.Mini Rev. Med. Chem.202121673173710.2174/18755607MTEx2NTM02 33200707
    [Google Scholar]
  19. YinZ. ZhangJ. ChenL. GuoQ. YangB. ZhangW. KangW. Anticancer effects and mechanisms of action of plumbagin: Review of research advances.BioMed Res. Int.2020202011010.1155/2020/6940953 33344645
    [Google Scholar]
  20. HafeezB.B. JamalM.S. FischerJ.W. MustafaA. VermaA.K. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF‐κB signaling pathways.Int. J. Cancer201213192175218610.1002/ijc.27478 22322442
    [Google Scholar]
  21. SandJ.M. HafeezB.B. JamalM.S. WitkowskyO. SiebersE.M. FischerJ. VermaA.K. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), isolated from Plumbago zeylanica, inhibits ultraviolet radiation-induced development of squamous cell carcinomas.Carcinogenesis201233118419010.1093/carcin/bgr249 22072620
    [Google Scholar]
  22. JampasriS. ReabroiS. TungmunnithumD. ParichatikanondW. PinthongD. Plumbagin suppresses breast cancer progression by downregulating HIF-1α expression via a PI3K/Akt/mTOR independent pathway under hypoxic condition.Molecules20222717571610.3390/molecules27175716 36080483
    [Google Scholar]
  23. BraunbergerC. ZehlM. ConradJ. WawroschC. StrohbachJ. BeifussU. KrennL. Flavonoids as chemotaxonomic markers in the genus Drosera.Phytochemistry2015118748210.1016/j.phytochem.2015.08.017 26342620
    [Google Scholar]
  24. PetrocelliG. MarrazzoP. BonsiL. FacchinF. AlvianoF. CanaiderS. Plumbagin, a natural compound with several biological effects and anti-inflammatory properties.Life (Basel)2023136130310.3390/life13061303 37374085
    [Google Scholar]
  25. BinoyA. NedungadiD. KatiyarN. BoseC. ShankarappaS.A. NairB.G. MishraN. Plumbagin induces paraptosis in cancer cells by disrupting the sulfhydryl homeostasis and proteasomal function.Chem. Biol. Interact.201931010873310873310.1016/j.cbi.2019.108733 31276663
    [Google Scholar]
  26. VanlalruataC. Traditional knowledge of farmers on medicinal plants and its adoption in mamit district of Mizoram.Int. J. Adv. in Agric. Sci. Technol.202182152310.47856/ijaast.2021.v08i2.003
    [Google Scholar]
  27. RashidI. YaqoobU. Traditional uses, phytochemistry and pharmacology of genus Fritillaria—a review.Bull. Natl. Res. Cent.202145112410.1186/s42269‑021‑00577‑z
    [Google Scholar]
  28. JimaT. T. MegersaM. Ethnobotanical study of medicinal plants used to treat human diseases in Berbere district, bale zone of Oromia regional state, south east Ethiopia.Evid. Based Complement Alternat. Med.20182018860294510.1155/2018/860294530105073
    [Google Scholar]
  29. RahimkhaniM. MordadiA.R. Survey of the lethal effect of ciprofloxacin and supernatant isolated from staphylococcus aureus under the stress of ciprofloxacin on methicillin-resistant staphylococcus aureus strains isolated from clinical specimens.J. Payavard Salamat2022156578584
    [Google Scholar]
  30. RahimkhaniM. Urinary tract infection in spinal cord injuries.Asian J. Pharm. Clin. Res.201472178182
    [Google Scholar]
  31. LiJ. ShenL. LuF. QinY. ChenR. LiJ. LiY. ZhanH. HeY. Plumbagin inhibits cell growth and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signaling pathway.Acta Pharmacol. Sin.201233224224910.1038/aps.2011.152 22231395
    [Google Scholar]
  32. RanaA.C. Evaluation of anticonvulasant activity of Plumbago zeylanica Linn leaf extract.Asian J. Pharm. Clin. Res.2010317678
    [Google Scholar]
  33. SheejaE. JoshiS.B. JainD.C. Bioassay-guided isolation of anti-inflammatory and antinociceptive compound from Plumbago zeylanica leaf.Pharm. Biol.201048438138710.3109/13880200903156424 20645715
    [Google Scholar]
  34. DangG.K. ParekarR.R. KamatS.K. ScindiaA.M. RegeN.N. Antiinflammatory activity of Phyllanthus emblica, Plumbago zeylanica and Cyperus rotundus in acute models of inflammation.Phytother. Res.201125690490810.1002/ptr.3345 21132843
    [Google Scholar]
  35. HongJ.M. KwonO.K. ShinI.S. SongH.H. ShinN.R. JeonC.M. OhS.R. HanS.B. AhnK.S. Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation.Immunobiology201522011910.1016/j.imbio.2014.10.004 25454812
    [Google Scholar]
  36. ArunachalamK.D. VelmuruganP. RajaR.B. Anti-inflammatory and cytotoxic effects of extract from Plumbago zeylanica.Afr. J. Microbiol. Res.201041212391245
    [Google Scholar]
  37. NapalchyalK.S. ShindeS. SinghJ.P. MishraD.S. Clinical evaluation of chitrakadi churnav combined with the kshar vasti in the management of amavata (rheumatoid arthritis).J. Ayurveda2013737380
    [Google Scholar]
  38. AvijganM. MahboubiM. Echinophora platyloba DC. as a new natural antifungal agent.Asian Pac. J. Trop. Dis.20155316917410.1016/S2222‑1808(14)60647‑2
    [Google Scholar]
  39. Kola-MustaphaA.T. GhazaliY.O. AyotundeH.T. AtunwaS.A. UsmanS.O. Evaluation of the antidiarrheal activity of the leaf extract of Parquetina nigrescens and formulation into oral suspensions.J. Exp. Pharmacol.201911657210.2147/JEP.S214417
    [Google Scholar]
  40. de Oliveira FormigaR. QuirinoZ.G.B. de Fátima Formiga Melo DinizM. MarinhoA.F. TavaresJ.F. BatistaL.M. Maytenus erythroxylon Reissek (Celastraceae) ethanol extract presents antidiarrheal activity via antimotility and antisecretory mechanisms.World J. Gastroenterol.201723244381438910.3748/wjg.v23.i24.438128706420
    [Google Scholar]
  41. DeglaL.H. OlounladeP.A. AmoussaA.M.O. AzandoE.V.B. Hounzangbe-AdoteM.S. LagnikaL. Pharmacognostical, biochemical activities and zootechnical applications of Psidium guajava (Myrtaceae), plant with high medicinal value in tropical and subtropical parts of the World: A review.J. Med. Plants Stud.202193141810.22271/plants.2021.v9.i3a.1275
    [Google Scholar]
  42. SalakoO.A. AkindeleA.J. ShittaO.M. ElegundeO.O. AdeyemiO.O. Antidiarrhoeal activity of aqueous leaf extract of Caladium bicolor (Araceae) and its possible mechanisms of action.J. Ethnopharmacol.201517622523110.1016/j.jep.2015.10.035 26514064
    [Google Scholar]
  43. PalomboE.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function.Phytother. Res.200620971772410.1002/ptr.1907 16619336
    [Google Scholar]
  44. RaimiM.M. OyedapoO.O. Bioactivity-guided evaluation of the root extract of Plumbago zeylanica.Int. J. Biol. Chem. Sci.20093410.4314/ijbcs.v3i4.47151
    [Google Scholar]
  45. RajakrishnanR. LekshmiR. BenilP.B. ThomasJ. AlFarhanA.H. RakeshV. KhalafS. Phytochemical evaluation of roots of Plumbago zeylanica L. and assessment of its potential as a nephroprotective agent.Saudi J. Biol. Sci.201724476076610.1016/j.sjbs.2017.01.001 28490944
    [Google Scholar]
  46. ZhongJ. LiJ. WeiJ. HuangD. HuoL. ZhaoC. LinY. ChenW. WeiY. Plumbagin restrains hepatocellular carcinoma angiogenesis by stromal cell-derived factor (SDF-1)/CXCR4-CXCR7 axis.Med. Sci. Monit.2019256110611910.12659/MSM.915782 31415486
    [Google Scholar]
  47. FalangK.D. UguruM.O. WannangN.N. AziI.H. ChiamakaN. Anti-ulcer activity of Plumbago zeylanica Linn root extract.J. Nat. Prod. Plant Resour.201225563567
    [Google Scholar]
  48. KotechaM. RaoK.S. Clinical evaluation of haridra & chitrak in the management of medoroga (obesity).J. Ayurveda20071226228
    [Google Scholar]
  49. ZarmouhM.M. SubramaniyamK. ViswanathanS. KumarP.G. Cause and effect of Plumbago zeylanica root extract on blood glucose and hepatic enzymes in experimental diabetic rats.Afr. J. Microbiol. Res.201042426742677
    [Google Scholar]
  50. HiradeveS. DanaoK. KharabeV. MendheB. Evaluation of anticancer activity of Plumbago zeylanica Linn leaf extract.Int. J. Biomed. Res.20111210.7439/ijbr.v1i2.52
    [Google Scholar]
  51. MohapatraS. MohantyJ. PaniS. HansdahS. BiswalA.K. SahooA.K. DebataP.R. Root extract of Plumbago zeylanica L. induces cytotoxicity, inhibits cell migration and induces S-phase cell cycle arrest through down regulation of EGFR in HeLa cervical cancer cells. Advances in Cancer Biology - MetastasisElsevier BV2022410002710.1016/j.adcanc.2022.100027
    [Google Scholar]
  52. BalsitisS. DickF. LeeD. FarrellL. HydeR.K. GriepA.E. DysonN. LambertP.F. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo.J. Virol.20057917113921140210.1128/JVI.79.17.11392‑11402.2005 16103190
    [Google Scholar]
  53. TilakJ.C. AdhikariS. DevasagayamT.P.A. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin.Redox Rep.20049421922710.1179/135100004225005976 15479566
    [Google Scholar]
  54. ChenA. ZhouX. TangS. LiuM. WangX. Evaluation of the inhibition potential of plumbagin against cytochrome P450 using LC-MS/MS and cocktail approach.Sci. Rep.2016612848210.1038/srep28482 27329697
    [Google Scholar]
  55. NazeemS. AzmiA.S. HanifS. AhmadA. MohammadR.M. HadiS.M. KumarK.S. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells.Mutagenesis200924541341810.1093/mutage/gep023 19505895
    [Google Scholar]
  56. SandurS.K. IchikawaH. SethiG. AhnK.S. AggarwalB.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents.J. Biol. Chem.200628125170231703310.1074/jbc.M601595200 16624823
    [Google Scholar]
  57. ZhaoY-L. LuD-P. Effects of plumbagin on the human acute promyelocytic leukemia cells in vitro.Zhongguo Shi Yan Xue Ye Xue Za Zhi2006142208211 16638181
    [Google Scholar]
  58. Sankara AdityaJ.V.S.P.K. NareshK.L. AnimishaM. In vitro anti-cancer activities of few plant extracts against MCF-7 and HT-29 cell lines.Int. J. Pharma Sci.201332185188
    [Google Scholar]
  59. GuanH.H. HuangY.H. LinE.S. ChenC.J. HuangC.Y. Plumbagin, a natural product with potent anticancer activities, binds to and inhibits dihydroorotase, a key enzyme in pyrimidine biosynthesis.Int. J. Mol. Sci.20212213686110.3390/ijms22136861 34202294
    [Google Scholar]
  60. YanC.H. LiF. MaY.C. Plumbagin shows anticancer activity in human osteosarcoma (MG-63) cells via the inhibition of S-Phase checkpoints and down-regulation of c-myc.Int. J. Clin. Exp. Med.2015881443214439 26550431
    [Google Scholar]
  61. LiY.L. ZhuX.M. ChenN.F. ChenS.T. YangY. LiangH. ChenZ.F. Anticancer activity of ruthenium(II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest.Eur. J. Med. Chem.202223611431210.1016/j.ejmech.2022.114312 35421660
    [Google Scholar]
  62. CaoY.Y. YuJ. LiuT.T. YangK.X. YangL.Y. ChenQ. ShiF. HaoJ.J. CaiY. WangM.R. LuW.H. ZhangY. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling.Cell Death Dis.2018921710.1038/s41419‑017‑0068‑6 29339720
    [Google Scholar]
  63. SharmaI. GusainD. DixitV.P. Hypolipidaemic and antiatherosclerotic effects of plumbagin in rabbits.Indian J. Physiol. Pharmacol.19913511014 1917004
    [Google Scholar]
  64. RamA. Effect of Plumbago zeylanica in hyperlipidaemic rabbits and its modification by vitamin E.Indian J. Pharmacol.199628161166
    [Google Scholar]
  65. BieS. MoQ. ShiC. YuanH. LiC. WuT. LiW. YuH. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro.PLoS One2024191e029749310.1371/journal.pone.0297493 38277418
    [Google Scholar]
  66. QuaziA. PatwekarM. PatwekarF. MezniA. AhmadI. IslamF. Evaluation of wound healing activity (excision wound model) of ointment prepared from infusion extract of polyherbal tea bag formulation in diabetes-induced rats.Evi.-based Complem. Alter. Med.20221710.1155/2022/1372199
    [Google Scholar]
  67. KodatiD.R. ShashidherB. KumarG.P. Evaluation of wound healing activity of methanolic root extract of Plumbago zeylanica L. in wistar albino rats.Asian J. Plant Sci. Res.2011122634
    [Google Scholar]
  68. JyothiV.A. Phytochemical evaluation & pharmaceutical screening of wound healing & antioxidant activity of Plumbago zeylanica.Int. J. Pharmacy Technol.2013558795891
    [Google Scholar]
  69. HonnegowdaT.M. KumarP. UdupaE G, P. SharanA. SinghR. PrasadH.K. RaoP. Effects of limited access dressing in chronic wounds: A biochemical and histological study.Indian J. Plast. Surg.201548102202810.4103/0970‑0358.15526325991881
    [Google Scholar]
  70. KumarJ. RamlalA. MallickD. MishraV. An overview of some biopesticides and their importance in plant protection for commercial acceptance.Plants2021106118510.3390/plants10061185 34200860
    [Google Scholar]
  71. IacuzziN. SalamoneF. FarruggiaD. TortoriciN. VultaggioL. TuttolomondoT. Development of a new micropropagation protocol and transfer of in vitro plants to in vivo conditions for Cascade hop.Plants20231215287710.3390/plants12152877 37571031
    [Google Scholar]
  72. MurthyH.N. JosephK.S. PaekK.Y. ParkS.Y. Bioreactor systems for micropropagation of plants: present scenario and future prospects.Front. Plant Sci.202314115958810.3389/fpls.2023.1159588 37152119
    [Google Scholar]
  73. Carreira-CasaisA. Lourenço-LopesC. OteroP. Carpena RodriguezM. Gonzalez PereiraA. EchaveJ. Soria-LopezA. ChamorroF. PrietoA. Application of green extraction techniques for natural additives production. Natural Food Additives.IntechOpen202110.5772/intechopen.100320
    [Google Scholar]
  74. ChenY. SongL. ChenP. LiuH. ZhangX. Extraction, rheological, and physicochemical properties of water-soluble polysaccharides with antioxidant capacity from Penthorum chinense Pursh.Foods20231212233510.3390/foods12122335 37372546
    [Google Scholar]
  75. RachieroG.P. BertonP. ShamshinaJ. Deep eutectic solvents: Alternative solvents for biomass-based waste valorization.Molecules20222719660610.3390/molecules27196606 36235144
    [Google Scholar]
  76. LiuH. ZhangW. JinL. LiuS. LiangL. WeiY. Plumbagin exhibits genotoxicity and induces G2/M cell cycle arrest via ROS-mediated oxidative stress and activation of ATM-p53 signaling pathway in hepatocellular cells.Int. J. Mol. Sci.2023247627910.3390/ijms24076279 37047251
    [Google Scholar]
  77. ZhengW. TaoZ. ChenC. ZhangC. ZhangH. YingX. ChenH. Plumbagin prevents IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and prevents the progression of osteoarthritis in mice.Inflammation201740384986010.1007/s10753‑017‑0530‑8 28168658
    [Google Scholar]
  78. RahimkhaniM. MordadiA. KazemianK. KhaliliH. Comparison of Helicobacter pylori detection methods: It’s association with leukocytosis and monocytosis.Infect. Disord. Drug Targets202120692092410.2174/1871526520666200707113955 32634084
    [Google Scholar]
  79. RahimkhaniM. GhofraniH. Helicobacter pylori and peptic ulcer in cirrhotic patients.Pak. J. Med. Sci.2008246849852
    [Google Scholar]
  80. GweeP.S. KhooK.S. OngH.C. SitN.W. Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, from Nepenthes gracilis.Pharm. Biol.201452121526153110.3109/13880209.2014.902083 25026359
    [Google Scholar]
  81. BothirajaC. JoshiP.P. DamaG.Y. PawarA.P. Rapid method for isolation of plumbagin, an alternative medicine from roots of Plumbago zeylanica.Eur. J. Integr. Med.201131394210.1016/j.eujim.2011.02.008
    [Google Scholar]
/content/journals/aia/10.2174/0122113525356076250103064301
Loading
/content/journals/aia/10.2174/0122113525356076250103064301
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test