Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Introduction

Heterocyclic compounds play an essential role in biological systems and occur widely in nature. They are fundamental in the development of pharmaceuticals aimed at combating microbial infections and other with the potential biological activities. Pharmacological evaluations have demonstrated their efficacy against diverse bacterial strains. This study investigates the antimicrobial properties of various benzimidazole hybrids.

Objective

This review article is expected to make a substantial contribution to the advancement of antibacterial medications. The research's goal is to improve the efficacy of combating bacterial infections by utilizing the potent properties of benzimidazole-based hybrid scaffolds. In the end, this will aid in reducing the global incidence of this contagious illness.

Methods

Several nitrogen-containing heterocyclic compounds display substantial potential as antibacterial agents. These compounds possess fused benzene and imidazole nuclei. These nuclei could change the number of electrons they have, which in turn affects their physiochemical characteristics. The versatility of drugs arises from their capacity to interact with receptors in various modalities, which is a key factor in drug pharmacological screening.

Results and Discussion

Pyrazole, imidazole, oxazole, thiazole, indole, and benzimidazole are examples of compounds that include nitrogen species. These nitrogen-containing compounds engage in metabolic interactions with other molecules within the cell. Nevertheless, an overabundance of reactive nitrogen species can cause cytotoxicity, causing harm to vital biological macromolecules. But benzimidazole is traditionally the most effective, with a wide range of important qualities, including antibacterial, anti-HIV, anticancer, antimalarial, antiviral, antifungal, antioxidant, anti-inflammatory, and anti-tubercular activities.

Conclusion

This study focuses on the efficacy of novel benzimidazole-based hybrid scaffolds in inhibiting microbial growth. The study primarily focuses on recent studies carried out from 2009 to 2024. The study highlights the effectiveness of different benzimidazole-based hybrids using minimum inhibitory concentration (MIC) values. More in-depth studies also show that adding electron-withdrawing groups (EWGs) to the nitrogenous framework might make them more effective. Further research is necessary to design strong, least-toxic benzimidazole-based hybrids that can either kill or inhibit multidrug-resistant (MDR) bacteria.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525350256250107073402
2025-01-23
2025-12-10
Loading full text...

Full text loading...

References

  1. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909
    [Google Scholar]
  2. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  3. PatelM. AvashthiG. GacemA. AlqahtaniM.S. ParkH.K. JeonB.H. A review of approaches to the metallic and non-metallic synthesis of benzimidazole (BnZ) and their derivatives for biological efficacy.Molecules20232814549010.3390/molecules28145490
    [Google Scholar]
  4. MahurkarN.D. GawhaleN.D. LokhandeM.N. UkeS.J. KodapeM.M. Benzimidazole: A versatile scaffold for drug discovery and beyond: A comprehensive review of synthetic approaches and recent advancements in medicinal chemistry.Results Chem.2023610113910.1016/j.rechem.2023.101139
    [Google Scholar]
  5. GuoY. HouX. FangH. Recent applications of benzimidazole as a privileged scaffold in drug discovery.Mini Rev. Med. Chem.202121111367137910.2174/1389557520666200804124924
    [Google Scholar]
  6. BanerjeeS. MukherjeeS. NathP. MukherjeeA. MukherjeeS. Ashok KumarS.K. DeS. BanerjeeS. A critical review of benzimidazole: Sky-high objectives towards the lead molecule to predict the future in medicinal chemistry.Results Chem.2023610101310.1016/j.rechem.2023.101013
    [Google Scholar]
  7. TahlanS. KumarS. NarasimhanB. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review.BMC Chem.201913110110.1186/s13065‑019‑0625‑4
    [Google Scholar]
  8. AlheetyM.A. MohammedL.A. FarhanM.A. DadooshS.A. MajeedA.H. MahmoodA.S. MahmoudZ.H. A review on benzimidazole heterocyclic compounds: Synthesis and their medicinal activity applications.SynOpen20237465267310.1055/a‑2155‑9125
    [Google Scholar]
  9. VasavaM.S. BhoiM.N. RathwaS.K. JethavaD.J. AcharyaP.T. PatelD.B. PatelH.D. Benzimidazole: A milestone in the field of medicinal chemistry.Mini Rev. Med. Chem.202020753256510.2174/1389557519666191122125453
    [Google Scholar]
  10. BrishtyS.R. HossainM.J. KhandakerM.U. FaruqueM.R.I. OsmanH. RahmanS.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives.Front. Pharmacol.20211276280710.3389/fphar.2021.762807
    [Google Scholar]
  11. MarinescuM. Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review.Antibiotics2023127122010.3390/antibiotics12071220
    [Google Scholar]
  12. HassanF. AzadI. AsifM. ShuklaD. HusainA. KhanA.R. SaquibM. NasibullahM. Isatin conjugates as antibacterial agents: A brief review.Med. Chem.202319541343010.2174/1573406418666220930145336
    [Google Scholar]
  13. AhmadN. AzadM.I. KhanA.R. AzadI. Benzimidazole as a promising antiviral heterocyclic scaffold: A review.J. Sci. Arts202121127328410.46939/J.Sci.Arts‑21.1‑b05
    [Google Scholar]
  14. FlorioR. CarradoriS. VeschiS. BroccoD. Di GenniT. CirilliR. CasulliA. CamaA. De LellisL. Screening of benzimidazole-based anthelmintics and their enantiomers as repurposed drug candidates in cancer therapy.Pharmaceuticals202114437210.3390/ph14040372
    [Google Scholar]
  15. PathareB. BansodeT. Review- biological active benzimidazole derivatives.Results Chem.2021310020010.1016/j.rechem.2021.100200
    [Google Scholar]
  16. KanwalA. AhmadM. AslamS. NaqviS.A.R. SaifM.J. Recent advances in antiviral benzimidazole derivatives: A mini review.Pharm. Chem. J.201953317918710.1007/s11094‑019‑01976‑3
    [Google Scholar]
  17. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance,2024172
    [Google Scholar]
  18. EbenezerO. Oyetunde-JoshuaF. OmotosoO.D. ShapiM. Benzimidazole and its derivatives: Recent Advances (2020-2022).Results Chem.2023510092510.1016/j.rechem.2023.100925
    [Google Scholar]
  19. NguyenV.T. HuynhT.K.C. HoG.T.T. NguyenT.H.A. Le Anh NguyenT. DaoD.Q. MaiT.V.T. HuynhL.K. HoangT.K.D. Metal complexes of benzimidazole-derived as potential anti-cancer agents: Synthesis, characterization, combined experimental and computational studies.R. Soc. Open Sci.20229922065910.1098/rsos.220659
    [Google Scholar]
  20. AnsariJ.A. AhmadM.K. FatimaN. AzadI. MahdiA.A. SatyanarayanG.N.V. AhmadN. Chemical characterization, in-silico evaluation, and molecular docking analysis of antiproliferative compounds isolated from the bark of Anthocephalus cadamba Miq.Anticancer. Agents Med. Chem.202222203416343710.2174/1871520622666220204123348
    [Google Scholar]
  21. OwaisM. KumarA. HasanS.M. SinghK. AzadI. HussainA. Suvaiv AkilM. Quinoline derivatives as promising scaffolds for antitubercular activity: A comprehensive review.Mini Rev. Med. Chem.202424131238125110.2174/0113895575281039231218112953
    [Google Scholar]
  22. LewisK. The Science of antibiotic discovery.Cell20201811294510.1016/j.cell.2020.02.056
    [Google Scholar]
  23. MohapatraT.R. GangulyS. The recent development of benzimidazole derivative as a promising pharmacological scaffold.J. Indian Chem. Soc.2024101910123710.1016/j.jics.2024.101237
    [Google Scholar]
  24. PicconiP. HindC. JamshidiS. NaharK. CliffordM. WandM.E. SuttonJ.M. RahmanK.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms.J. Med. Chem.201760146045605910.1021/acs.jmedchem.7b00108
    [Google Scholar]
  25. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules26092671
    [Google Scholar]
  26. DoklaE.M.E. AbutalebN.S. MilikS.N. KandilE.A.E.A. QassemO.M. ElgammalY. NasrM. McPhillieM.J. AbouzidK.A.M. SeleemM.N. ImmingP. AdelM. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against gram-negative bacteria.Eur. J. Med. Chem.202324711504010.1016/j.ejmech.2022.115040
    [Google Scholar]
  27. AhmedS.K. HusseinS. QurbaniK. IbrahimR.H. FareeqA. MahmoodK.A. MohamedM.G. Antimicrobial resistance: Impacts, challenges, and future prospects.JJ. Med. Surgery, Public Heal.2024210008110.1016/j.glmedi.2024.100081
    [Google Scholar]
  28. MalasalaS. AhmadM.N. AkunuriR. ShuklaM. KaulG. DasguptaA. MadhaviY.V. ChopraS. NanduriS. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis.Eur. J. Med. Chem.202121211299610.1016/j.ejmech.2020.112996
    [Google Scholar]
  29. OlczakA. PawlakT. KałużyńskaS. GobisK. Korona-GłowniakI. SuśniakK. ZaborowskiM. SzczesioM. Structure and microbiological activity of 1h-benzo[d]imidazole derivatives.Int. J. Mol. Sci.2023244331910.3390/ijms24043319
    [Google Scholar]
  30. SharmaS. ChauhanA. RanjanA. MathkorD.M. HaqueS. RamniwasS. TuliH.S. JindalT. YadavV. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability.Front. Microbiol.202415140316810.3389/fmicb.2024.1403168
    [Google Scholar]
  31. Shekhar YadavC. AzadI. Rahman KhanA. NasibullahM. AhmadN. HansdaD. Nusrat AliS. ShrivastavK. AkilM. LohaniM.B. Recent advances in the synthesis of pyrazoline derivatives from chalcones as potent pharmacological agents: A comprehensive review.Results Chem.2024710132610.1016/j.rechem.2024.101326
    [Google Scholar]
  32. HosamaniK.M. SeetharamareddyH.R. KeriR.S. HanamanthagoudaM.S. MoloneyM.G. Microwave assisted, one-pot synthesis of 5-nitro- 2-aryl substituted-1H-benzimidazole libraries: Screening in vitro for antimicrobial activity.J. Enzyme Inhib. Med. Chem.20092451095110010.1080/14756360802632716
    [Google Scholar]
  33. Al-TelT.H. Al-QawasmehR.A. Post groebke-blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1, 2-a]pyrimidine derivatives as potential antimicrobial agents.Eur. J. Med. Chem.201045125848585510.1016/j.ejmech.2010.09.049
    [Google Scholar]
  34. FangB. ZhouC.H. RaoX.C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents.Eur. J. Med. Chem.20104594388439810.1016/j.ejmech.2010.06.012
    [Google Scholar]
  35. JubieS. RajeshkumarR. SiddharthaG. SurendrareddyK. AndD.H.S. ElangoK. Microwave assisted synthesis of some novel benzimidazole substituted fluoroquinolones and their antimicrobial evaluation.J. Pharm. Sci. Res2010226976
    [Google Scholar]
  36. DuaR. SonwaneS.K. SrivastavaS.K. SrivastavaS.D. Conventional and greener approach for the synthesis of some novel substituted-4-oxothiazolidine and their 5-arylidene derivatives of 2-methyl-benzimidazole: Antimicrobial activities.J. Chem. Pharm. Res.201021415423
    [Google Scholar]
  37. Malla ReddyV. Ravinder ReddyK. Synthesis and antimicrobial activity of some novel 4-(1H-Benz[d]imidazol-2yl)-1,3-thiazol-2-amines.Chem. Pharm. Bull. (Tokyo)201058795395610.1248/cpb.58.953
    [Google Scholar]
  38. RohiniR. ShankerK. ReddyP.M. RavinderV. Synthesis and antimicrobial activities of a new class of 6-arylbenzimidazo[1,2-c]quinazolines.J. Braz. Chem. Soc.2010211495710.1590/S0103‑50532010000100009
    [Google Scholar]
  39. MungraD.C. PatelM.P. PatelR.G. Microwave-assisted synthesis of some new tetrazolo[1,5-a]quinoline-based benzimidazoles catalyzed by p-TsOH and investigation of their antimicrobial activity.Med. Chem. Res.201120678278910.1007/s00044‑010‑9388‑0
    [Google Scholar]
  40. HosamaniK.M. ShingalapurR.V. Synthesis of 2‐mercaptobenzimidazole derivatives as potential anti‐microbial and cytotoxic agents.Arch. Pharm. (Weinheim)2011344531131910.1002/ardp.200900291
    [Google Scholar]
  41. SoniL.K. NarsinghaniT. SethiA. Antimicrobial benzimidazole derivatives: synthesis and in vitro biological evaluation.Med. Chem. Res.201221124330433410.1007/s00044‑012‑9976‑2
    [Google Scholar]
  42. DesaiN.C. DodiyaA.M. MakwanaA.H. Antimicrobial screening of novel synthesized benzimidazole nucleus containing 4-oxo-thiazolidine derivatives.Med. Chem. Res.20122192320232810.1007/s00044‑011‑9752‑8
    [Google Scholar]
  43. RanjithP.K. RajeeshP. HaridasK.R. SusantaN.K. Guru RowT.N. RishikesanR. Suchetha KumariN. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents.Bioorg. Med. Chem. Lett.201323185228523410.1016/j.bmcl.2013.06.072
    [Google Scholar]
  44. ZhouB. LiB. YiW. BuX. MaL. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives.Bioorg. Med. Chem. Lett.201323133759376310.1016/j.bmcl.2013.05.004
    [Google Scholar]
  45. ZhangH.Z. DamuG.L.V. CaiG.X. ZhouC.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of fluconazole analogues and their synergistic effects with chloromycin, norfloxacin and fluconazole.Eur. J. Med. Chem.20136432934410.1016/j.ejmech.2013.03.049
    [Google Scholar]
  46. SathaiahG. Ravi KumarA. Chandra ShekharA. RajuK. Shanthan RaoP. NarsaiahB. Raghuram ReddyA. LakshmiD. SridharB. Design and synthesis of positional isomers of 1-alkyl-2-trifluoromethyl-5 or 6-substituted benzimidazoles and their antimicrobial activity.Med. Chem. Res.20132231229123710.1007/s00044‑012‑0131‑x
    [Google Scholar]
  47. RavindernathA. ReddyM.S. SunilV. Synthesis and biological evaluation of benzo[d]imidazolyl chromeno[2,3-d]pyrimidinones.Med. Chem. Res.201423275976410.1007/s00044‑013‑0674‑5
    [Google Scholar]
  48. AjaniO. AderohunmuD. OlorunsholaS. IkpoC. OlanrewajuI. Facile synthesis, characterization and antimicrobial activity of 2-alkanamino benzimidazole derivatives.Orient. J. Chem.201632110912010.13005/ojc/320111
    [Google Scholar]
  49. KapoorA. DhimanN. Synthesis and evaluation of 2-aryl substituted benzimidazole derivatives bearing 1,3,4-oxadiazole nucleus for antimicrobial activity.Pharm. Lett.201681297104
    [Google Scholar]
  50. ShindeS.V. TaleR.H. RodgA.H. RaoteA.D. PatilK.M. PawarR.P. Design, synthesis and biological evaluation of novel ureidobezimadazole hybrid as potent TNF± and IL-6 inhibitor, and antimicrobial agents.J. Chem. Pharm. Res.201684395401
    [Google Scholar]
  51. GarrepalliS. TatipamulaS. GadeA. YadeliK. GuggilaR. Synthesis, characterization and evaluation of new benzimidazole derivatives.World J. Pharm.20164103942
    [Google Scholar]
  52. RaadH. KubbaA. Synthesis, characterization and antibacterial activity of new 5-ethoxy-2-mercapto benzimidazole derivatives.J. Pharm. Res.20161012814824
    [Google Scholar]
  53. El-GoharyN.S. ShaabanM.I. Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents.Eur. J. Med. Chem.201713125526210.1016/j.ejmech.2017.03.018
    [Google Scholar]
  54. SinghL.R. AvulaS.R. RajS. SrivastavaA. PalnatiG.R. TripathiC.K.M. PasupuletiM. SashidharaK.V. Coumarin-benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation.J. Antibiot.201717995496110.1038/ja.2017.70
    [Google Scholar]
  55. CindrićM. PerićM. KraljM. Martin-KleinerI. David-CordonnierM.H. PaljetakH.Č. MatijašićM. VerbanacD. Karminski-ZamolaG. HranjecM. Antibacterial and antiproliferative activity of novel 2-benzimidazolyl- and 2-benzothiazolyl-substituted benzo[b]thieno-2-carboxamides.Mol. Divers.201822363764610.1007/s11030‑018‑9822‑7
    [Google Scholar]
  56. WangY.N. BheemanaboinaR.R.Y. CaiG.X. ZhouC.H. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove.Bioorg. Med. Chem. Lett.20182891621162810.1016/j.bmcl.2018.03.046
    [Google Scholar]
  57. RedayanM.A. HusseinM.S. laftaA.T. Synthesis, spectroscopic characterization, and antibacterial evaluation of new Schiff bases bearing benzimidazole moiety.J. Phys. Conf. Ser.20181003101201810.1088/1742‑6596/1003/1/012018
    [Google Scholar]
  58. NaazF. SrivastavaR. SinghA. SinghN. VermaR. SinghV.K. SinghR.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole.Bioorg. Med. Chem.201826123414342810.1016/j.bmc.2018.05.015
    [Google Scholar]
  59. SkepperC.K. MoreauR.J. AppletonB.A. BentonB.M. DrummJ.E.III FengB.Y. GengM. HuC. LiC. LingelA. LuY. MamoM. MergoW. MostafaviM. RathC.M. SteffekM. TakeokaK.T. UeharaK. WangL. WeiJ.R. XieL. XuW. ZhangQ. de VicenteJ. Discovery and optimization of phosphopantetheine adenylyltransferase inhibitors with gram-negative antibacterial activity.J. Med. Chem.20186183325334910.1021/acs.jmedchem.7b01861
    [Google Scholar]
  60. LiuH.B. GaoW.W. TangadanchuV.K.R. ZhouC.H. GengR.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation.Eur. J. Med. Chem.2018143668410.1016/j.ejmech.2017.11.027
    [Google Scholar]
  61. DesaiN.C. PandyaD. VajaD. Synthesis and antimicrobial activity of some heterocyclic compounds bearing benzimidazole and pyrazoline motifs.Med. Chem. Res.2018271526010.1007/s00044‑017‑2040‑5
    [Google Scholar]
  62. AshokD. GunduS. AamateV.K. DevulapallyM.G. Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities.Mol. Divers.201822476977810.1007/s11030‑018‑9828‑1
    [Google Scholar]
  63. ArabH.A. FaramarziM.A. SamadiN. IrannejadH. ForoumadiA. EmamiS. New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents.Mol. Divers.201822481582510.1007/s11030‑018‑9834‑3
    [Google Scholar]
  64. Al-blewiF.F. AlmehmadiM.A. AouadM.R. BardaweelS.K. SahuP.K. MessaliM. RezkiN. El AshryE.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents.Chem. Cent. J.201812111010.1186/s13065‑018‑0479‑1
    [Google Scholar]
  65. K, G.; S, I. Synthesis, characterization and antimicrobial study of 1, 2-disubstituted benzimidazoles.Int. J. Chem. Sci.20181641710.21767/0972‑768X.1000291
    [Google Scholar]
  66. KhalifaM.E. GobouriA.A. KabliF.M. AltalhiT.A. AlmalkiA.S.A. MohamedM.A. Synthesis, Antibacterial, and anti hepg2 cell line human hepatocyte carcinoma activity of some new potentially benzimidazole-5-(aryldiazenyl)thiazole derivatives.Molecules20182312328510.3390/molecules23123285
    [Google Scholar]
  67. PadhyG.K. PandaJ. RaulS.K. BeheraA.K. Synthesis of some new benzimidazole acid hydrazide derivatives as antibacterial agents.Indian J. Heterocycl. Chem.2019284447451
    [Google Scholar]
  68. KhalifaM.E. Synthesis and evaluation of new 2‐mercaptomethyl benzimidazole scaffolds as potential antibacterial, antioxidant and cytotoxic agents.ChemistrySelect2020534105621056610.1002/slct.202002822
    [Google Scholar]
  69. ShastriR. JadhavS. A facile protocol for synthesis of some novel 2-phenethyl-1h-benzimidazole derivatives and screening of in-vitro anti-inflammatory and antimicrobial activities.Chem. Sci. Trans.20198222823610.7598/cst2019.1566
    [Google Scholar]
  70. SinghG. KaurC. SharmaP.K. KumarR. MohanC. Evaluation and characterisation of antibacterial potential of novel schiff bases of benzimidazole.Int. Res. J. Pharm201910217618310.7897/2230‑8407.100264
    [Google Scholar]
  71. Bala GuraiahM. TriloknadhS. NagarajuB. Rajesh KumarT.V. VijayaD. RaoC.V. Synthesis, characterization and biological activity of some novel benzimidazole linked 1,3,4-oxadiazoles.Heterocyclic Lett.20199122309632
    [Google Scholar]
  72. WangY.T. ShiT.Q. FuJ. ZhuH.L. Discovery of novel bacterial FabH inhibitors (Pyrazol-Benzimidazole amide derivatives): Design, synthesis, bioassay, molecular docking and crystal structure determination.Eur. J. Med. Chem.201917120922010.1016/j.ejmech.2019.03.026
    [Google Scholar]
  73. SinghM. KurmiM. Liquid phase synthesis of coumarino benzimidazoles for antimicrobial activity.Indo Am. J. Pharm. Res.20199943045610.5281/ZENODO.3463901
    [Google Scholar]
  74. ChaithanyaB. KasiviswanathI.V. PrabhakaraC.D. Synthesis and pharmacological screening of new Isatin-3-[n2-(benzimidazol-1- acetyl)]hydrazone.Bull. Chem. Soc. Ethiop.201933232132910.4314/bcse.v33i2.12
    [Google Scholar]
  75. TahlanS. KumarS. RamasamyK. LimS.M. ShahS.A.A. ManiV. PathaniaR. NarasimhanB. Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents.BMC Chem.20191315010.1186/s13065‑019‑0567‑x
    [Google Scholar]
  76. SinghG. KaurC. SharmaP.K. KumarR. MohanC. Acetamide Linked azetidinone-benzimidazole derivatives: Synthesis and antibacterial activity.Int. Res. J. Pharm201910314815310.7897/2230‑8407.100394
    [Google Scholar]
  77. CheddieA. ShintreS.A. BanthoA. MocktarC. KoorbanallyN.A. Synthesis and antibacterial activity of a series of 2‐trifluoromethylbenzimidazole‐thiazolidinone derivatives.J. Heterocycl. Chem.202057129930710.1002/jhet.3777
    [Google Scholar]
  78. DoklaE.M.E. AbutalebN.S. MilikS.N. LiD. El-BazK. ShalabyM.A.W. Al-KarakiR. NasrM. KleinC.D. AbouzidK.A.M. SeleemM.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria.Eur. J. Med. Chem.202018611185010.1016/j.ejmech.2019.111850
    [Google Scholar]
  79. ChaudhariS.R. PatilP.N. PatilU.K. PatelH.M. RajputJ.D. PawarN.S. PatilD.B. Green synthesis of N-substituted benzimidazoles: The promising methicillin resistant Staphylococcus aureus (MRSA) inhibitors.Chem. Data Collect20202510034410.1016/j.cdc.2020.100344
    [Google Scholar]
  80. MorcossM.M. AbdelhafezE.S.M.N. IbrahemR.A. Abdel-RahmanH.M. Abdel-AzizM. Abou El-EllaD.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents.Bioorg. Chem.202010110395610.1016/j.bioorg.2020.103956
    [Google Scholar]
  81. Abdel-MotaalM. AlmohawesK. TantawyM.A. Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives.Bioorg. Chem.202010110397210.1016/j.bioorg.2020.103972
    [Google Scholar]
  82. MarinescuM. CintezăL.O. MartonG.I. ChifiriucM.C. PopaM. StănculescuI. ZălaruC.M. StavaracheC.E. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases.BMC Chem.20201414510.1186/s13065‑020‑00697‑z
    [Google Scholar]
  83. AparnaY. NirmalaG. SubhashiniN.J.P. SharadaL.N. SreekanthS. Synthesis and antimicrobial activity of novel bis-1,2,3-triazol-1h-4-yl-substituted aryl benzimidazole-2-thiol derivatives.Russ. J. Gen. Chem.20209081501150610.1134/S1070363220080186
    [Google Scholar]
  84. Penieres-CarrilloJ.G. Ríos-GuerraH. Pérez-FloresJ. Rodríguez-MolinaB. Torres-ReyesÁ. Barrera-TéllezF. González-CarrilloJ. Moreno-GonzálezL. Martínez-ZaldívarA. Nolasco-FidencioJ.J. Matus-MezaA.S. Luna-MoraR.A. Reevaluating the synthesis of 2,5‐disubstituted‐1 H‐benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor.J. Heterocycl. Chem.202057143645510.1002/jhet.3801
    [Google Scholar]
  85. ObaiahN. BodkeY.D. TelkarS. Synthesis of 3‐[(1H‐Benzimidazol‐2‐ylsulfanyl)(aryl)methyl]‐4‐hydroxycoumarin derivatives as potent bioactive molecules.ChemistrySelect20205117818410.1002/slct.201903472
    [Google Scholar]
  86. NazS. BagadeM.B. Green route for the synthesis of oxadiazole derivative containing benzimidazole moiety and its mannich bases: In-vitro antimicrobial activity.Rasayan J. Chem.202013137037610.31788/RJC.2020.1315343
    [Google Scholar]
  87. BhavsarZ.A. AcharyaP.T. JethavaD.J. PatelD.B. VasavaM.S. RajaniD.P. PithawalaE. PatelH.D. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives.J. Heterocycl. Chem.202057124215423810.1002/jhet.4129
    [Google Scholar]
  88. EftekhariS. ForoughifarN. HallajianS. Khajeh-AmiriA. Green synthesis of some novel imidazole schiff base derivatives under microwave irradiation/reflux conditions and evaluations of the antibacterial activity.Curr. Microw. Chem.20207320721510.2174/2213335607999200520124245
    [Google Scholar]
  89. EvrardA. SiomenanC. EtienneC.T. DaoudaT. SouleymaneC. DrissaS. AnéA. EvrardA. SiomenanC. EtienneC.T. DaoudaT. SouleymaneC. DrissaS. AnéA. Design, synthesis and in vitro antibacterial activity of 2-thiomethyl-benzimidazole derivatives.Adv. Biol. Chem.202111416517710.4236/abc.2021.114012
    [Google Scholar]
  90. BamoroC. BambaF. Steve-EvanesK.T.D. AurélieV. VincentC. BamoroC. BambaF. Steve-EvanesK.T.D. AurélieV. VincentC. Design, synthesis and antibacterial activity evaluation of 4,5-diphenyl-1<i>H</i>-imidazoles derivatives.Open J. Med. Chem.2021112172610.4236/ojmc.2021.112002
    [Google Scholar]
  91. Sapijanskaitė-BanevičB. PalskysV. VaickelionienėR. ŠiugždaitėJ. KavaliauskasP. GrybaitėB. MickevičiusV. Synthesis and antibacterial activity of new azole, diazole and triazole derivatives based on p-aminobenzoic acid.Molecules202126259710.3390/molecules26092597
    [Google Scholar]
  92. KamatV. YallurB.C. PoojaryB. PatilV.B. NayakS.P. KrishnaP.M. JoshiS.D. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems.J. Chin. Chem. Soc. (Taipei)20216861055106610.1002/jccs.202000454
    [Google Scholar]
  93. Patrick-ArmandA. SiomenanC. DoumadeZ. AdéyoléT. EricB. DaoudaT. DrissaS. AnéA. Patrick-ArmandA. SiomenanC. DoumadeZ. AdéyoléT. EricB. DaoudaT. DrissaS. AnéA. Synthesis and antibacterial activities of new 2-(benzylthio)pyrimidines and 2-(Benzimidazolylmethylthio)pyrimidines Derivatives.Open J. Med. Chem.2021113273910.4236/ojmc.2021.113003
    [Google Scholar]
  94. KhanS. KaleM. SiddiquiF. NemaN. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein.Digit. Chinese Med.20214210211910.1016/j.dcmed.2021.06.004
    [Google Scholar]
  95. SunH. AnsariM.F. FangB. ZhouC.H. Natural berberine-hybridized benzimidazoles as novel unique bactericides against Staphylococcus aureus.J. Agric. Food Chem.202169287831784010.1021/acs.jafc.1c02545
    [Google Scholar]
  96. WaghmodeK.T. JadhavV. NikamB.T. Synthesis and antibacterial study of thiadiazole substituted benzimidazole derivatives.World J. Pharm. Res.20211031572157810.20959/wjpr20213‑19885
    [Google Scholar]
  97. YanL. FuJ. LiS. ZhangJ. WangS. GuQ. ZhangY. LinF. Microwave-assisted catalyzed synthesis and in vitro bioactivity evaluation of benzimidazoles bearing phenolic hydroxyl.Chem. Res. Chin. Univ.202137363964610.1007/s40242‑020‑0274‑0
    [Google Scholar]
  98. VlasovS.V. VlasovaO.D. SeverinaH.I. KrolenkoK.Y. BorysovO.V. Abu SharkhA.I.M. VlasovV.S. GeorgiyantsV.A. Design, synthesis and in vitro antimicrobial activity of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines.Sci. Pharm.20218944910.3390/scipharm89040049
    [Google Scholar]
  99. BegunovR.S. ZaitsevaY.V. SokolovA.A. EgorovD.O. FilimonovS.I. Synthesis and antibacterial activity of 1,2,3,4-tetrahydro- and pyrido[1,2-a]Benzimidazoles.Pharm. Chem. J.2022561222810.1007/s11094‑022‑02596‑0
    [Google Scholar]
  100. Jaysing BhorR. Sakharam SableK. Shivaji BhosaleM. Bhausaheb DigheS. Synthesis and in-vitro antibacterial activity of n′-{4-[2-(1h-benzimidazol-2-yl)-2-oxoethyl]phenyl}-2- hydroxyacetohydrazide and it’s derivatives.Asian J. Res. Chem. Pharm. Sci.2022101253410.36673/AJRCPS.2022.v10.i01.A04
    [Google Scholar]
  101. Jaysing BhorR. PawarS. MagarS. DigheS. Synthesis and in-vitro anti-bacterial activity of “3-(2-[1hbenzimidazole-2-yl)-2-oxethyl]phenyl)acetic acid and its derivatives.Asian J. Res. Chem. Pharm. Sci.2022101354410.36673/AJRCPS.2022.v10.i01.A05
    [Google Scholar]
  102. CoulibalyS. CoulibalS. BambaF. AchiP-A. KouadioF.K. EvrardA. AnéA. CoulibalyS. CoulibalS. BambaF. AchiP-A. KouadioF.K. EvrardA. AnéA. Synthesis and effect of N-alkylation on antibacterial activity of 2-(Benzylthio) methyl-1H-benzimidazole derivatives.GSC Biol. Pharm. Sci.202220327210.30574/gscbps.2022.20.3.0370
    [Google Scholar]
  103. RepV. ŠtulićR. KoštrunS. KuridžaB. CrnolatacI. Radić StojkovićM. PaljetakH.Č. PerićM. MatijašićM. Raić-MalićS. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling.RSC Med. Chem.202213121504152510.1039/D2MD00143H
    [Google Scholar]
  104. El FaydyM. DahaiehN. OunineK. LakhrissiB. WaradI. TüzünB. ZarroukA. Synthesis, identification, antibacterial activity, ADME/T and 1BNA-docking investigations of 8-quinolinol analogs bearing a benzimidazole moiety.Arab. J. Sci. Eng.202247149751010.1007/s13369‑021‑05749‑7
    [Google Scholar]
  105. FasiuddinG.S. Liakath Ali KhanF. SakthivelS. MuthuS. IrfanA. Synthesis, spectroscopic, molecular docking and inhibitory activity of 6-Bromo-2-(4-chlorophenyl)-1H-benzimidazole: A DFT approach.J. Mol. Struct.2022126113281510.1016/j.molstruc.2022.132815
    [Google Scholar]
  106. AchiP.A. KouadioF.K. CoulibaliS. Synthesis and antibacterial effect of 2-(benzylthio) methyl-1h-benzimidazole derivatives on two Bacteria of medical interest.Acta Chim. Pharm. Indica20221231810.37532/2277‑288X.2022.12(3).183
    [Google Scholar]
  107. YeşilçayırE. Çelikİ. ŞenH.T. GürpınarS.S. EryılmazM. Ayhan-KılcıgilG. Novel benzimidazole-based compounds as antimicrobials: Synthesis, molecular docking, molecular dynamics and in silico ADME profile studies.Acta Chim. Slov.202269241942910.17344/acsi.2021.7314
    [Google Scholar]
  108. CelikI. ÇevikU.A. KarayelA. IşıkA. KayışU. GülÜ.D. BostancıH.E. KoncaS.F. ÖzkayY. KaplancıklıZ.A. Synthesis, molecular docking, dynamics, quantum-chemical computation, and antimicrobial activity studies of some new benzimidazole-thiadiazole hybrids.ACS Omega2022750470154703010.1021/acsomega.2c06142
    [Google Scholar]
  109. PerinN. CindrićM. ZlatarI. PersoonsL. DaelemansD. RadovanovićV. BanjanacM. BrajšaK. HranjecM. Biological evaluation of novel bicyclic heteroaromatic benzazole derived acrylonitriles: Synthesis, antiproliferative and antibacterial activity.Med. Chem. Res.20223181339135010.1007/s00044‑022‑02915‑w
    [Google Scholar]
  110. IşikA. Acar ÇevikU. ÇelikI. BostancıH.E. KarayelA. GündoğduG. InceU. KoçakA. ÖzkayY. KaplancıklıZ.A. Benzimidazole-hydrazone derivatives: Synthesis, in vitro anticancer, antimicrobial, antioxidant activities, in silico DFT and ADMET studies.J. Mol. Struct.2022127013394610.1016/j.molstruc.2022.133946
    [Google Scholar]
  111. SouleymaneC. SiomenanC. EvrardA. BakaryC. EtienneC.T. AneA. Influence of N-methyl piperidine on antibacterial activity of 2-(Thioalkyl)-1H_methylbenzimidazole derivatives.Chem Xpress2022144918
    [Google Scholar]
  112. GadaliK.E. RafyaM. MansouriA.E. MaatallahM. Van-der leeA. MehdiA. OuahrouchA. BenkhaltiF. SanghviY.S. TaourirteM. LazrekH.B. Synthesis, structural characterization and antibacterial activity evaluation of novel quinolone-1,2,3-triazole-benzimidazole hybrids.J. Mol. Struct.2023128213517910.1016/j.molstruc.2023.135179
    [Google Scholar]
  113. AlDifarH.A. BaaiuB.S. DarwishK.M.A. AliM.F. DakhilO.O. Abd-AlsalamM. Al DifarH. BthaloylaminoK.E.Y.W.O.R.D.S.B. Synthesis of benzimidazole and phthaloylamino acid derivatives and antibacterial activity.J. Med. Chem. Sci.20236919751984
    [Google Scholar]
  114. LiuK. LuoR. FuJ. BaoL. XueY. GuQ. ZhangY. LinF. Convenient and green synthesis of novel 1,2,5-trisubstituted benzimidazole compounds and their antibacterial activity evaluation.J. Indian Chem. Soc.20232051095110510.1007/s13738‑022‑02736‑z
    [Google Scholar]
  115. FuJ. YueY. LiuK. WangS. ZhangY. SuQ. GuQ. LinF. ZhangY. PTSA-catalyzed selective synthesis and antibacterial evaluation of 1,2-disubstituted benzimidazoles.Mol. Divers.202327287388710.1007/s11030‑022‑10460‑2
    [Google Scholar]
  116. SukiennikJ. OlczakA. GobisK. Korona-GłowniakI. SuśniakK. FruzińskiA. SzczesioM. Structures and biological activity of three 2-(pyridin-2-yl)-1 H -benzimidazole derivatives.Acta Crystallogr. C Struct. Chem.2023791250451210.1107/S2053229623009452
    [Google Scholar]
  117. MallikantiV. ThummaV. MattaR. ValluruK.R. KonidenaL.N.S. BodduL.S. PochampallyJ. Synthesis, antimicrobial activity and molecular docking of novel benzimidazole conjugated 1,2,3-triazole analogues.Chem. Data Collect.20234510103410.1016/j.cdc.2023.101034
    [Google Scholar]
  118. PhanN.K.N. HuynhT.K.C. NguyenH.P. LeQ.T. NguyenT.C.T. NgoK.K.H. NguyenT.H.A. TonK.A. ThaiK.M. HoangT.K.D. Exploration of remarkably potential multitarget-directed n-alkylated-2-(substituted phenyl)-1 H -benzimidazole derivatives as antiproliferative, antifungal, and antibacterial agents.ACS Omega2023831287332874810.1021/acsomega.3c03530
    [Google Scholar]
  119. SelvakumaranM. PredhanekarM.I. KubaibA. VisagaperumalD. Novel benzimidazole linked piperidine derivatives screened for antibacterial and antioxidant properties with density functional and molecular mechanic tools.Results Chem.2023510076510.1016/j.rechem.2023.100765
    [Google Scholar]
  120. BečA. CindrićM. PersoonsL. BanjanacM. RadovanovićV. DaelemansD. HranjecM. Novel biologically active N-substituted benzimidazole derived schiff bases: Design, synthesis, and biological evaluation.Molecules2023289372010.3390/molecules28093720
    [Google Scholar]
  121. LunguL. BlajaS. CucicovaC. CiocarlanA. BarbaA. KulcițkiV. ShovaS. VornicuN. GeanaE.I. MangalagiuI.I. AricuA. Synthesis and antimicrobial activity evaluation of homodrimane sesquiterpenoids with a benzimidazole unit.Molecules202328393310.3390/molecules28030933
    [Google Scholar]
  122. Ahmed Saleh AlzahraniS. NazreenS. ElhenawyA.A. NeamatallahT. MahboobM. Synthesis, biological evaluation, and molecular docking of new benzimidazole-1,2,3-triazole hybrids as antibacterial and antitumor agents.Polycycl. Aromat. Compd.20234343380339110.1080/10406638.2022.2069133
    [Google Scholar]
  123. PadhyG.K. RathD. BhuktaP. KumarL.A. SethyK. PandaJ. RaulS.K. BeheraA.K. Synthesis Of novel benzimidazole-pyrazoline hybrid molecules as antibacterial and anticancer agent.J. Pharm. Negat. Results20231452152610.47750/PNR.2023.14.S01.61
    [Google Scholar]
  124. MokariyaJ.A. RajaniD.P. PatelM.P. 1,2,4‐triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities.Arch. Pharm. (Weinheim)20233564220054510.1002/ardp.202200545
    [Google Scholar]
  125. Duy Tuy HaN. PhuongT. Van CuongN. Nguyen Minh AnT. Novel benzimidazol‐2‐thione derivatives: Synthesis, in vitro anticancer, antimicrobial activities, and in silico molecular docking study.ChemistrySelect2023817e20230024610.1002/slct.202300246
    [Google Scholar]
  126. ElwahyA.H.M. HammadH.F. IbrahimN.S. Al-ShamiriH.A.S. DarweeshA.F. AbdelhamidI.A. Synthesis and antibacterial activities of novel hybrid molecules based on benzothiazole, benzimidazole, benzoxazole, and pyrimidine derivatives, each connected to N-arylacetamide and benzoate groups.J. Mol. Struct.2024130713796510.1016/j.molstruc.2024.137965
    [Google Scholar]
  127. BečA. ZlatićK. BanjanacM. RadovanovićV. StarčevićK. KraljM. HranjecM. Design, synthesis and biological activity of novel methoxy and hydroxy-substituted N-benzimidazole-derived carboxamides.Molecules2024299213810.3390/molecules29092138
    [Google Scholar]
/content/journals/aia/10.2174/0122113525350256250107073402
Loading
/content/journals/aia/10.2174/0122113525350256250107073402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test