Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Human Immunodeficiency Virus (HIV) is a retrovirus that is well known to be the causative agent for acquired immunodeficiency syndrome. In this review, we discussed the HIV virus, its transmission, events that lead to AIDS, the historical aspect of its emergence, current prospects in antiretroviral drugs, and its evolution up until current treatment strategies. We have also discussed the recent research related to new molecules, which showed potent anti-HIV activity and have the potential to become a key targetfor drugdevelopment. New studies have explored novel drug target sites and the benefits of using artificial intelligence and machine learning in drug discovery and design, leading to better results and advancements in treatment.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525349779250101062707
2025-01-27
2025-10-31
Loading full text...

Full text loading...

References

  1. AbadieR.B. BrownE.M. CampbellJ.R. AlvarezI.A. AllampalliV. AhmadzadehS. VarrassiG. ShekoohiS. KayeA.D. Incidence and risks of HIV infection, medication options, and adverse effects in accidental needle stick injuries: A Narrative review.Cureus2024161e5152110.7759/cureus.51521 38304675
    [Google Scholar]
  2. DandonaL. KumarG.A. LakshmiV. AhmedG.M.M. AkbarM. RamgopalS.P. SudhaT. AlaryM. DandonaR. HIV incidence from the first population-based cohort study in India.BMC Infect. Dis.201313132710.1186/1471‑2334‑13‑327 23865751
    [Google Scholar]
  3. Fuster-RuizdeApodacaM.J. WohlD.A. CascioM. GuaraldiG. RockstrohJ. HodsonM. RichmanB. BrownG. AndersonJ. LazarusJ.V. Why we need to re‐define long‐term success for people living with HIV.HIV Med.202324S23710.1111/hiv.13461 36920411
    [Google Scholar]
  4. MondalM.N.I. ShitanM. Factors affecting the HIV/AIDS epidemic: An ecological analysis of global data.Afr. Health Sci.201313230131010.4314/ahs.v13i2.15 24235928
    [Google Scholar]
  5. TianX. ChenJ. WangX. XieY. ZhangX. HanD. FuH. YinW. WuN. Global, regional, and national HIV/AIDS disease burden levels and trends in 1990–2019: A systematic analysis for the global burden of disease 2019 study.Front. Public Health202311106866410.3389/fpubh.2023.1068664 36875364
    [Google Scholar]
  6. RajY. SahuD. PandeyA. VenkateshS. ReddyD.C.S. BakkaliT. DasC. SinghK.J. KantS. BhattacharyaM. StoverJ. JhaU.M. KumarP. MishraR.M. ChandraN. GulatiB.K. MathurS. JoshiD. ChavanL. Modelling and estimation of HIV prevalence and number of people living with HIV in India, 2010–2011.Int. J. STD AIDS201627141257126610.1177/0956462415612650 26494704
    [Google Scholar]
  7. RosenF. The Acquired Immunodeficiency Syndrome.J. Clin. Invest.19857513
    [Google Scholar]
  8. 24 lakh HIV-positive people in India, new cases decline.Available from: https://theindianpractitioner.com/24-lakh-hiv-positive-people-in-india-2022/ 2022
  9. UNAIDSGlobal HIV statistics.Available from: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf 2024
  10. ReevesJ.D. DomsR.W. Human immunodeficiency virus type 2.J. Gen. Virol.20028361253126510.1099/0022‑1317‑83‑6‑1253 12029140
    [Google Scholar]
  11. MindelA. Tenant-FlowersM. ABC of AIDS: Natural history and management of early HIV infection.BMJ200132272971290129310.1136/bmj.322.7297.1290 11375235
    [Google Scholar]
  12. MarfatiaY. SharmaA. VoraR. ModiM. SharmaA. Adverse effects of antiretroviral treatment.Indian J. Dermatol. Venereol. Leprol.200874323423710.4103/0378‑6323.41368 18583790
    [Google Scholar]
  13. GongV. Acquired immunodeficiency syndrome (AIDS).Am. J. Emerg. Med.19842433634610.1016/0735‑6757(84)90131‑1 6097278
    [Google Scholar]
  14. PatrickG.L. An Introduction to Medicinal Chemistry.Oxford University Press202310.1093/hesc/9780198866664.001.0001
    [Google Scholar]
  15. SchwartzS.A. NairM.P.N. Current concepts in human immunodeficiency virus infection and AIDS.Clin. Diagn. Lab. Immunol.19996329530510.1128/CDLI.6.3.295‑305.1999 10225826
    [Google Scholar]
  16. HaseltineW.A. Molecular biology of the human immunodeficiency virus type 1.FASEB J.19915102349236010.1096/fasebj.5.10.1829694 1829694
    [Google Scholar]
  17. LiG. De ClercqE. HIV genome-wide protein associations: a review of 30 years of research.Microbiol. Mol. Biol. Rev.201680367973110.1128/MMBR.00065‑15 27357278
    [Google Scholar]
  18. EinkaufK.B. OsbornM.R. GaoC. SunW. SunX. LianX. ParsonsE.M. GladkovG.T. SeigerK.W. BlackmerJ.E. JiangC. YuklS.A. RosenbergE.S. YuX.G. LichterfeldM. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses.Cell20221852266282.e1510.1016/j.cell.2021.12.011 35026153
    [Google Scholar]
  19. SchumanJ.S. OrellanaJ. FriedmanA.H. TeichS.A. Acquired immunodeficiency syndrome (AIDS).Surv. Ophthalmol.198731638441010.1016/0039‑6257(87)90031‑2 3303395
    [Google Scholar]
  20. CurranJ.W. LawrenceD.N. JaffeH. KaplanJ.E. ZylaL.D. ChamberlandM. WeinsteinR. LuiK.J. SchonbergerL.B. SpiraT.J. AlexanderW.J. SwingerG. AmmannA. SolomonS. AuerbachD. MildvanD. StoneburnerR. JasonJ.M. HaverkosH.W. EvattB.L. Acquired immunodeficiency syndrome (AIDS) associated with transfusions.N. Engl. J. Med.19843102697510.1056/NEJM198401123100201 6606780
    [Google Scholar]
  21. AntinoriA. CoenenT. CostagiolaD. DedesN. EllefsonM. GatellJ. GirardiE. JohnsonM. KirkO. LundgrenJ. MocroftA. D’Arminio MonforteA. PhillipsA. RabenD. RockstrohJ.K. SabinC. SönnerborgA. De WolfF. Late presentation of HIV infection: a consensus definition.HIV Med.2011121616410.1111/j.1468‑1293.2010.00857.x 20561080
    [Google Scholar]
  22. ChuC. SelwynP.A. Diagnosis and initial management of Acute HIV Infection.Am. Fam. Physician2010811012371244
    [Google Scholar]
  23. De CockK.M. JaffeH.W. CurranJ.W. The evolving epidemiology of HIV/AIDS.AIDS201226101205121310.1097/QAD.0b013e328354622a 22706007
    [Google Scholar]
  24. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children.Available from: https://iris.who.int/bitstream/handle/10665/43699/9789241595629_eng.pdf 2007
  25. FonnerV.A. DalglishS.L. KennedyC.E. BaggaleyR. O’ReillyK.R. KoechlinF.M. RodolphM. Hodges-MameletzisI. GrantR.M. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations.AIDS201630121973198310.1097/QAD.0000000000001145 27149090
    [Google Scholar]
  26. U.S. department of health and human services, office of AIDS research, national institutes of health.Available from: https://clinicalinfo.hiv.gov/sites/default/files/glossary/Glossary-English_HIVinfo.pdf 2021
  27. BecerraJ.C. BildsteinL.S. GachJ.S. Recent Insights into the HIV/AIDS Pandemic.Microb. Cell20163945047410.15698/mic2016.09.529 28357381
    [Google Scholar]
  28. WeissR.A. How does HIV cause AIDS?Science199326051121273127910.1126/science.8493571 8493571
    [Google Scholar]
  29. GulickR.M. New HIV drugs: 2018 and beyond.Curr. Opin. HIV AIDS201813429129310.1097/COH.0000000000000478 29702493
    [Google Scholar]
  30. KirchhoffF. HIV Life Cycle: Overview. Encyclopedia of AIDS.New York, NYSpringer20131910.1007/978‑1‑4614‑9610‑6_60‑1
    [Google Scholar]
  31. RyuW.S. Virus life cycle. Molecular Virology of Human Pathogenic Viruses2016314510.1016/B978‑0‑12‑800838‑6.00003‑5
    [Google Scholar]
  32. LusicM. SilicianoR.F. Nuclear landscape of HIV-1 infection and integration.Nat. Rev. Microbiol.2017152698210.1038/nrmicro.2016.162 27941817
    [Google Scholar]
  33. HokelloJ. TyagiK. OworR.O. SharmaA.L. BhushanA. DanielR. TyagiM. New insights into HIV life cycle, Th1/Th2 shift during HIV infection and preferential virus infection of Th2 cells: Implications of early HIV treatment initiation and care.Life (Basel)202414110410.3390/life14010104 38255719
    [Google Scholar]
  34. RossiE. MeuserM.E. CunananC.J. CocklinS. Structure, function, and interactions of the HIV-1 capsid protein.Life (Basel)202111210010.3390/life11020100 33572761
    [Google Scholar]
  35. MersonM.H. O’MalleyJ. SerwaddaD. ApisukC. The history and challenge of HIV prevention.Lancet2008372963747548810.1016/S0140‑6736(08)60884‑3 18687461
    [Google Scholar]
  36. MelhuishA. LewthwaiteP. Natural history of HIV and AIDS.Medicine (Abingdon)201846635636110.1016/j.mpmed.2018.03.010
    [Google Scholar]
  37. WuZ. ChenJ. ScottS.R. McGooganJ.M. History of the HIV epidemic in China.Curr. HIV/AIDS Rep.201916645846610.1007/s11904‑019‑00471‑4 31773405
    [Google Scholar]
  38. The Origins of AIDS.Available from: https://books.google.co.in/books?hl=en&lr=&id=dCoNEAAAQBAJ&oi=fnd&pg=PR10&dq=hiv+aids+history&ots=BcBJWomN1X&sig=QaPzY9LbEYVRXGbpwHIoqJxk_Mw&redir_esc=y#v=onepage&q=hiv%20aids%20history&f=false
  39. ReevesJ.D. PieferA.J. Emerging drug targets for antiretroviral therapy.Drugs200565131747176610.2165/00003495‑200565130‑00002 16114975
    [Google Scholar]
  40. EngelmanA. CherepanovP. The structural biology of HIV-1: mechanistic and therapeutic insights.Nat. Rev. Microbiol.201210427929010.1038/nrmicro2747 22421880
    [Google Scholar]
  41. TeixeiraC. GomesJ.R.B. GomesP. MaurelF. BarbaultF. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug.Eur. J. Med. Chem.201146497999210.1016/j.ejmech.2011.01.046 21345545
    [Google Scholar]
  42. GhoshA.K. OsswaldH.L. PratoG. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS.J. Med. Chem.201659115172520810.1021/acs.jmedchem.5b01697 26799988
    [Google Scholar]
  43. QadirM.I. MalikS.A. HIV fusion inhibitors.Rev. Med. Virol.2010201233310.1002/rmv.631 19827030
    [Google Scholar]
  44. CunhaR.F. SimõesS. CarvalheiroM. PereiraJ.M.A. CostaQ. AscensoA. Novel antiretroviral therapeutic strategies for HIV.Molecules20212617530510.3390/molecules26175305 34500737
    [Google Scholar]
  45. ArtsE.J. HazudaD.J. HIV-1 antiretroviral drug therapy.Cold Spring Harb. Perspect. Med.201224a00716110.1101/cshperspect.a007161 22474613
    [Google Scholar]
  46. DorrP. PerrosM. CCR5 inhibitors in HIV-1 therapy.Expert Opin. Drug Discov.20083111345136110.1517/17460441.3.11.1345 23496169
    [Google Scholar]
  47. EstéJ.A. TelentiA. HIV entry inhibitors.Lancet20073709581818810.1016/S0140‑6736(07)61052‑6 17617275
    [Google Scholar]
  48. LiM. Oliveira PassosD. ShanZ. SmithS.J. SunQ. BiswasA. ChoudhuriI. StrutzenbergT.S. HaldaneA. DengN. LiZ. ZhaoX.Z. BrigantiL. KvaratskheliaM. BurkeT.R.Jr LevyR.M. HughesS.H. CraigieR. LyumkisD. Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants.Sci. Adv.2023929eadg595310.1126/sciadv.adg5953 37478179
    [Google Scholar]
  49. GüneşF. HIV integrase inhibitors.Int. J. PharmATA2023312330
    [Google Scholar]
  50. DzinamariraT. AlmehmadiM. AlsaiariA.A. AllahyaniM. AljuaidA. AlsharifA. KhanA. KamalM. RabaanA.A. AlfarajA.H. AlShehailB.M. AlotaibiN. AlShehailS.M. ImranM. Highlights on the development, related patents, and prospects of lenacapavir: The first-in-class HIV-1 capsid inhibitor for the treatment of multi-drug-resistant HIV-1 infection.Medicina2023596104110.3390/medicina59061041 37374245
    [Google Scholar]
  51. StaltariO. LeporiniC. CaroleoB. RussoE. SiniscalchiA. De SarroG. GallelliL. Drug-drug interactions: antiretroviral drugs and recreational drugs.Recent Patents CNS Drug Discov.20159315316310.2174/1574889809666141127101623 25429704
    [Google Scholar]
  52. Menéndez‐AriasL. DelgadoR. Molecular biology center, higher council for scientific research & autonomous university of madrid, laboratory of molecular microbiology.Available from: https://digital.csic.es/bitstream/10261/304384/3/antiretroviral-therapy.pdf 2021
  53. TsengA. SeetJ. PhillipsE.J. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future.Br. J. Clin. Pharmacol.201579218219410.1111/bcp.12403 24730660
    [Google Scholar]
  54. CheneyL. BarbaroJ.M. BermanJ.W. Antiretroviral drugs impact autophagy with toxic outcomes.Cells202110490910.3390/cells10040909 33920955
    [Google Scholar]
  55. CihlarT. RayA.S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine.Antiviral Res.2010851395810.1016/j.antiviral.2009.09.014 19887088
    [Google Scholar]
  56. LiG. WangY. De ClercqE. Approved HIV reverse transcriptase inhibitors in the past decade.Acta Pharm. Sin. B20221241567159010.1016/j.apsb.2021.11.009 35847492
    [Google Scholar]
  57. PatelP.H. ZulfiqarH. Reverse Transcriptase Inhibitors. StatPearls.StatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  58. VaidyaK. KadamA. NemaV. Anti-Retroviral drugs for HIV: old and new.Austin J. HIV AIDS Res.2016321026
    [Google Scholar]
  59. PirroneV. ThakkarN. JacobsonJ.M. WigdahlB. KrebsF.C. Combinatorial approaches to the prevention and treatment of HIV-1 infection.Antimicrob. Agents Chemother.20115551831184210.1128/AAC.00976‑10 21343462
    [Google Scholar]
  60. WangY. De ClercqE. LiG. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment.Expert Opin. Drug Metab. Toxicol.2019151081382910.1080/17425255.2019.1673367 31556749
    [Google Scholar]
  61. LiaoC. WangQ. Chapter 18 - Authentic HIV-1 integrase inhibitors for the treatment of HIV-1/AIDS. Privileged Scaffolds in Drug Discovery.Academic Press202337739010.1016/B978‑0‑443‑18611‑0.00026‑7
    [Google Scholar]
  62. TrivediJ. MahajanD. JaffeR.J. AcharyaA. MitraD. ByrareddyS.N. Recent advances in the development of integrase inhibitors for HIV treatment.Curr. HIV/AIDS Rep.2020171637510.1007/s11904‑019‑00480‑3 31965427
    [Google Scholar]
  63. WangY. LvZ. ChuY. HIV protease inhibitors: a review of molecular selectivity and toxicity.HIV AIDS201579510410.2147/HIV.S79956
    [Google Scholar]
  64. BanerjeeR. PereraL. TillekeratneL.M.V. Potential SARS-CoV-2 main protease inhibitors.Drug Discov. Today202126380481610.1016/j.drudis.2020.12.005 33309533
    [Google Scholar]
  65. van ZylG. BaleM.J. KearneyM.F. HIV evolution and diversity in ART-treated patients.Retrovirology20181511410.1186/s12977‑018‑0395‑4 29378595
    [Google Scholar]
  66. LuD.Y. WuH.Y. YarlaN.S. XuB. DingJ. LuT.R. HAART in HIV/AIDS treatments: future trends.Infect. Disord. Drug Targets2018181152210.2174/1871526517666170505122800 28474549
    [Google Scholar]
  67. KhanK. KhanA.H. SulaimanS.A. SooC.T. AftabR.A. Adverse effect of Highly Active Anti-Retroviral Therapy (HAART) in HIV/AIDS patients.IJOPP201473293510.5530/ijopp.7.3.7
    [Google Scholar]
  68. RosenbloomD.I.S. HillA.L. RabiS.A. SilicianoR.F. NowakM.A. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome.Nat. Med.20121891378138510.1038/nm.2892 22941277
    [Google Scholar]
  69. SharpP.M. HahnB.H. The evolution of HIV-1 and the origin of AIDS.Philos. Trans. R. Soc. Lond. B Biol. Sci.201036515522487249410.1098/rstb.2010.0031 20643738
    [Google Scholar]
  70. SilvaB.F. PeixotoG.M.L. da LuzS.R. de MoraesS.M.F. PeresS.B. Adverse effects of chronic treatment with the Main subclasses of highly active antiretroviral therapy: a systematic review.HIV Med.201920742943810.1111/hiv.12733 31006976
    [Google Scholar]
  71. SubbaramanR. ChaguturuS.K. MayerK.H. FlaniganT.P. KumarasamyN. Adverse effects of highly active antiretroviral therapy in developing countries.Clin. Infect. Dis.20074581093110110.1086/521150 17879931
    [Google Scholar]
  72. BrizziM. PérezS.E. MichienziS.M. BadowskiM.E. Long-acting injectable antiretroviral therapy: will it change the future of HIV treatment?Ther. Adv. Infect. Dis.2023102049936122114977310.1177/20499361221149773 36741193
    [Google Scholar]
  73. PrasadS. The long-acting injectable shaping the future of HIV therapy.Available from: https://hdl.handle.net/10779/rcsi.23998314.v1 2023
  74. GandhiR.T. BedimoR. HoyJ.F. LandovitzR.J. SmithD.M. EatonE.F. LehmannC. SpringerS.A. SaxP.E. ThompsonM.A. BensonC.A. BuchbinderS.P. del RioC. EronJ.J.Jr GünthardH.F. MolinaJ.M. JacobsenD.M. SaagM.S. Antiretroviral drugs for treatment and prevention of HIV infection in adults.JAMA20233291638410.1001/jama.2022.22246 36454551
    [Google Scholar]
  75. BesterS.M. Adu-AmpratwumD. AnnamalaiA.S. WeiG. BrigantiL. MurphyB.C. HaneyR. FuchsJ.R. KvaratskheliaM. Structural and mechanistic bases of viral resistance to HIV-1 capsid inhibitor lenacapavir.MBio2022135e01804e0182210.1128/mbio.01804‑22 36190128
    [Google Scholar]
  76. HitchcockA.M. KufelW.D. DwyerK.A.M. SidmanE.F. Lenacapavir: A novel injectable HIV-1 capsid inhibitor.Int. J. Antimicrob. Agents202463110700910.1016/j.ijantimicag.2023.107009 37844807
    [Google Scholar]
  77. CarnesS.K. SheehanJ.H. AikenC. Inhibitors of the HIV-1 capsid, a target of opportunity.Curr. Opin. HIV AIDS201813435936510.1097/COH.0000000000000472 29782334
    [Google Scholar]
  78. ClinicSpotsHIV Treatment Costs in India.Available from: https://www.clinicspots.com/cost/hiv-treatment/india
  79. HillA. LeviJ. FairheadC. PilkingtonV. WangJ. JohnsonM. LayneJ. RobertsD. FortunakJ. Lenacapavir to prevent HIV infection: current prices versus estimated costs of production.J. Antimicrob. Chemother.202479112906291510.1093/jac/dkae305 39225016
    [Google Scholar]
  80. ObisesanO.S. TshweuL.L. ChaukeS. MalatjiK.B. RamalapaB. AlexandreK.B. MufhanduH.T. Synthesis and characterization of tenofovir disoproxil fumarate loaded nanoparticles for HIV‐1 treatment.Nano Select202456230015710.1002/nano.202300157
    [Google Scholar]
  81. WanZ. ShiM. GongY. LucciM. LiJ. ZhouJ. YangX.L. LelliM. HeX. MaoJ. Multitasking pharmacophores support cabotegravir-based long-acting HIV Pre-Exposure Prophylaxis (PrEP).Molecules202429237610.3390/molecules29020376 38257288
    [Google Scholar]
  82. XuZ. ChenQ. ZhangY. LiangC. Coumarin-based derivatives with potential anti-HIV activity.Fitoterapia202115010486310.1016/j.fitote.2021.104863 33582266
    [Google Scholar]
  83. FobofouS.A.T. FrankeK. BrandtW. ManzinA. MadedduS. SerreliG. SannaG. WessjohannL.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum.Nat. Prod. Res.202337121947195310.1080/14786419.2022.2110094 35959682
    [Google Scholar]
  84. BatranR.Z. SabtA. KhedrM.A. AllayehA.K. PannecouqueC. KassemA.F. 4-Phenylcoumarin derivatives as new HIV-1 NNRTIs: Design, synthesis, biological activities, and computational studies.Bioorg. Chem.202314110691810.1016/j.bioorg.2023.106918 37866206
    [Google Scholar]
  85. HuangX. HuangX. LiQ. MaM. CuiY. YangL. WangH. LuoR. ChenJ. YangJ. LinJ. LiD. ZhengY. ZhangJ. Seco-cyclic phorbol derivatives and their anti-HIV-1 activities.Chin. J. Nat. Med.202422436537410.1016/S1875‑5364(24)60630‑8 38658099
    [Google Scholar]
  86. JoseB.J. MaityD. Analysis of innovative drug therapies via nanotechnologies against HIV/AIDS: A clinical systematic review.TBEAH202121354210.36647/TBEAH/02.01.A005
    [Google Scholar]
  87. GuedesM.D.V. MarquesM.S. BerlitzS.J. FacureM.H.M. CorreaD.S. SteffensC. ContriR.V. Külkamp-GuerreiroI.C. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration.Nanomaterials202313477010.3390/nano13040770 36839138
    [Google Scholar]
  88. KaushikA. JayantR.D. NairM. Nanomedicine for neuroHIV/AIDS Management.Nanomedicine (Lond.)201813766967310.2217/nnm‑2018‑0005 29485351
    [Google Scholar]
  89. OmidianH. MfoafoK. Exploring the potential of nanotechnology in pediatric healthcare: Advances, challenges, and future directions.Pharmaceutics2023156158310.3390/pharmaceutics15061583 37376032
    [Google Scholar]
  90. SrivastavaN. MishraV. MishraY. RanjanA. AljabaliA.A.A. El-TananiM. AlfagihI.M. TambuwalaM.M. Development and evaluation of a protease inhibitor antiretroviral drug-loaded carbon nanotube delivery system for enhanced efficacy in HIV treatment.Int. J. Pharm.202465012367810.1016/j.ijpharm.2023.123678 38065344
    [Google Scholar]
  91. ZhouL. GodseS. SinhaN. KodidelaS. SinghU. KumarS. Darunavir nanoformulation suppresses HIV pathogenesis in macrophages and improves drug delivery to the brain in Mice.Pharmaceutics202416455510.3390/pharmaceutics16040555 38675216
    [Google Scholar]
  92. ManuK.R. AbishekK.G. RoutS.R. AlmalkiW.H. YadavH.N. SahebkarA. Chapter 11 - Gold nanoparticles as a recent nanocarrier against HIV/AIDS.Gold Nanoparticles for Drug Delivery.Academic Press202430532910.1016/B978‑0‑443‑19061‑2.00015‑8
    [Google Scholar]
  93. WatanabeS.M. ChenM.H. KhanM. EhrlichL. KemalK.S. WeiserB. ShiB. ChenC. PowellM. AnastosK. BurgerH. CarterC.A. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities.Retrovirology201310114310.1186/1742‑4690‑10‑143 24257210
    [Google Scholar]
  94. YuF.H. ChouT.A. LiaoW.H. HuangK.J. WangC.T. Gag-Pol Transframe Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation.PLoS One2015106e012797410.1371/journal.pone.0127974 26030443
    [Google Scholar]
  95. SarniS. BiswasB. LiuS. OlsonE.D. KitzrowJ.P. ReinA. WysockiV.H. Musier-ForsythK. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal.J. Biol. Chem.202029542143911440110.1074/jbc.RA120.014835 32817318
    [Google Scholar]
  96. ChenX. WangX. The HIV-1 gag p6: a promising target for therapeutic intervention.Retrovirology2024211110.1186/s12977‑024‑00633‑2 38263239
    [Google Scholar]
  97. SteierZ. KimE.J.Y. AylardD.A. RobeyE.A. The CD4 versus CD8 T cell fate decision: A multiomics-informed perspective.Annu. Rev. Immunol.202442123525810.1146/annurev‑immunol‑083122‑040929 38271641
    [Google Scholar]
  98. BeavisA.C. Dienger-StambaughK. BriggsK. ChenZ. AbrahamM. SpearmanP. HeB. A J Paramyxovirus-vectored HIV vaccine induces humoral and cellular responses in mice.Vaccine20244292347235610.1016/j.vaccine.2024.02.068 38443277
    [Google Scholar]
  99. MacielM.Jr AmaraR.R. BarK.J. CrottyS. DeeksS.G. DuplessisC. GaihaG. McElrathM.J. McMichaelA. PalinA. RutishauserR. ShapiroS. SmileyS.T. D’SouzaM.P. Exploring synergies between B- and T-cell vaccine approaches to optimize immune responses against HIV—workshop report.NPJ Vaccines2024913910.1038/s41541‑024‑00818‑y 38383616
    [Google Scholar]
  100. MueckschF. FacklerO.T. Eliciting CD4-mimicking broadly neutralizing antibodies: new avenues towards the rational design of an HIV vaccine.Signal Transduct. Target. Ther.2024914910.1038/s41392‑024‑01776‑6 38424414
    [Google Scholar]
  101. ProkopovichA.K. LitvinovaI.S. ZubkovaA.E. YudkinD.V. CXCR4 is a potential target for anti-HIV gene therapy.Int. J. Mol. Sci.2024252118710.3390/ijms25021187 38256260
    [Google Scholar]
  102. KothawadeS. WaghV. PandeV. LunkadA. Gene Therapy Approaches in HIV Treatment. Infectious Diseases.IntechOpen202410.5772/intechopen.112138
    [Google Scholar]
  103. KitawiR. LedgerS. KelleherA.D. AhlenstielC.L. Advances in HIV gene therapy.Int. J. Mol. Sci.2024255277110.3390/ijms25052771 38474018
    [Google Scholar]
  104. LaPlanteS.R. CoricP. BouazizS. FrançaT.C.C. NMR spectroscopy can help accelerate antiviral drug discovery programs.Microbes Infect.202426710529710.1016/j.micinf.2024.105297 38199267
    [Google Scholar]
  105. XiangY. DuJ. FujimotoK. LiF. SchneiderJ. TaoC. Application of artificial intelligence and machine learning for HIV prevention interventions.Lancet HIV202291e54e6210.1016/S2352‑3018(21)00247‑2 34762838
    [Google Scholar]
  106. Angyiba SergeA. Ngnotouom Ngnokam TaniaC. Koudom PatriceL. Abena JerryV. Ai in the management of HIV: Case study cameroon.Int J Virol AIDS20231012469567X10.23937/2469‑567X/1510089
    [Google Scholar]
  107. LainjoB. Artificial intelligence with machine learning and the enigmatic discovery of HIV cure.J. Auton. Intell20237210.32629/jai.v7i2.697
    [Google Scholar]
  108. EbulueN.C.C. EkkehN.O.V. EbulueN.O.R. EkesiobiN.C.S. Developing predictive models for HIV Drug resistance: A genomic and AI approach.Int. Med. Sci. Res. J.20244552154310.51594/imsrj.v4i5.1119
    [Google Scholar]
  109. FauciA.S. LaneH.C. Four Decades of HIV/AIDS — Much Accomplished, Much to Do.N. Engl. J. Med.202038311410.1056/NEJMp1916753 32609976
    [Google Scholar]
  110. Curing HIV—How Far Have We Come?Available from: https://www.amfar.org/news/how-many-have-been-cured/ 2024
/content/journals/aia/10.2174/0122113525349779250101062707
Loading
/content/journals/aia/10.2174/0122113525349779250101062707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AIDS; CD4 lymphocyte; evolution of HIV treatment; HIV; life cycle of HIV; RNA virus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test