Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Avian Influenza (AI) viruses are a class of viruses that have been discovered in birds. A valuable insight gained from previous pandemics is that every pandemic influenza virus now under study has viral genes derived from Avian Influenza Viruses (AIVs). Avian Influenza (AI) consists of Haemagglutinin (H1–H16) and all 9-neuraminidase influenza. We provide an overview of the epidemiology and outcomes of AIV infections in different countries. Worldwide, 3417 human cases were reported, over which a thousand people died as a result of viruses carrying the Hemagglutinin (HA) gene of subtypes H7-H9. Since the data was recorded in 1966, the first human cases were reported in 1998 up to December 2023 (with 128 reported human infections globally), most occurring in China. The Y280 lineage of H9N2 AI was first identified in 2020 in South Korea. These viruses have killed at least 622 million domestic birds and triggered multiple illness outbreaks in wild and domestic poultry. Low Pathogenic Avian Influenza (LPAI) is a milder virus that mostly affects the respiratory system. Three waves of influenza outbreaks have been caused by the H7 influenza viruses, which are transmitted by wild birds and have affected multiple continents. On May 22, 2024, India's National Focal Point reported a case of avian influenza A(H9N2) in a person from West Bengal, India.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525351925250121103042
2025-02-10
2025-10-13
Loading full text...

Full text loading...

References

  1. ZhouJ. QiaoM.L. JahejoA.R. HanX.Y. WangP. WangY. RenJ.L. NiuS. ZhaoY.J. ZhangD. BiY.H. WangQ.H. SiL.L. FanR.W. ShangG.J. TianW.X. Effect of avian influenza virus subtype H9N2 on the expression of complement-associated genes in chicken erythrocytes.Br. Poult. Sci.202364446747510.1080/00071668.2023.219130836939295
    [Google Scholar]
  2. AlexanderD.J. An overview of the epidemiology of avian influenza.Vaccine200725305637564410.1016/j.vaccine.2006.10.05117126960
    [Google Scholar]
  3. SwayneD.E. SuarezD.L. Highly pathogenic avian influenza.Rev. Sci. Tech.200019246348210.20506/rst.19.2.123010935274
    [Google Scholar]
  4. QiL. PujanauskiL.M. DavisA.S. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.mBio.201456e0211610.1128/mBio.02116‑1425406382
    [Google Scholar]
  5. CoxN.J. UyekiT.M. Avian influenza.Avian Influenza2008145348410.1002/9780813818634.ch20
    [Google Scholar]
  6. FouchierR. MunsterV. Epidemiology of low pathogenic avian influenza viruses in wild birds.Rev. Sci. Tech.2009281495810.20506/rst.28.1.186319618618
    [Google Scholar]
  7. AlexanderD.J. A review of avian influenza in different bird species.Vet. Microbiol.2000741-231310.1016/S0378‑1135(00)00160‑710799774
    [Google Scholar]
  8. BenskinC.M.H. WilsonK. JonesK. HartleyI.R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection.Biol. Rev. Camb. Philos. Soc.200984334937310.1111/j.1469‑185X.2008.00076.x19438430
    [Google Scholar]
  9. Al-GaribS. AghaA. Al-MesilatyL. Low pathogenic avian influenza H9N2: World-wide distribution.Worlds Poult. Sci. J.201672112513610.1017/S0043933915002603
    [Google Scholar]
  10. GíriaM.T. Polymerase basic protein 1 (PB1) as a molecular determinant of fitness and adaptation in influenza A virus.,Doctoral theses Universidade de Lisboa: Portugal201616
    [Google Scholar]
  11. AbbasM. AbidinZ. Proteins of influenza virus: A review.J. Infect. Mol. Biol2013117
    [Google Scholar]
  12. KortewegC. GuJ. Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: A comparative analysisThis paper is one of a selection of papers published in this special issue entitled “second international symposium on recent advances in basic, clinical, and social medicine” and has undergone the Journal’s usual peer review process.Biochem. Cell Biol.201088457558710.1139/O10‑01720651828
    [Google Scholar]
  13. CauseyD. EdwardsS.V. Ecology of avian influenza virus in birds.J. Infect. Dis.2008197s1Suppl. 1S29S3310.1086/52499118269325
    [Google Scholar]
  14. ShiJ. ZengX. CuiP. YanC. ChenH. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies.Emerg. Microbes Infect.2023121215507210.1080/22221751.2022.215507236458831
    [Google Scholar]
  15. WongS.S.Y. YuenK. Avian influenza virus infections in humans.Chest2006129115616810.1378/chest.129.1.15616424427
    [Google Scholar]
  16. NaveedA. AbdullahS. NaveedM.A. A review of strategic immune evasion by influenza virus and antiviral response of interferon.Adv. Biotechnol. Microbiol.20191251710.19080/AIBM.2019.12.555848
    [Google Scholar]
  17. VandegriftK.J. SokolowS.H. DaszakP. KilpatrickA.M. Ecology of avian influenza viruses in a changing world.Ann. N. Y. Acad. Sci.20101195111312810.1111/j.1749‑6632.2010.05451.x20536820
    [Google Scholar]
  18. KrammerF. Schultz-CherryS. We need to keep an eye on avian influenza.Nat. Rev. Immunol.202323526726810.1038/s41577‑023‑00868‑836944755
    [Google Scholar]
  19. YangX. TanB. ZhouX. XueJ. ZhangX. WangP. ShaoC. LiY. LiC. XiaH. QiuJ. Interferon-inducible transmembrane protein 3 genetic variant rs12252 and influenza susceptibility and severity: A meta-analysis.PLoS One2015105e012498510.1371/journal.pone.012498525942469
    [Google Scholar]
  20. Pérez-RubioG. Ponce-GallegosM.A. Domínguez-MazzoccoB.A. Ponce-GallegosJ. García-RamírezR.A. Falfán-ValenciaR. Role of the host genetic susceptibility to 2009 pandemic influenza A H1N1.Viruses202113234410.3390/v1302034433671828
    [Google Scholar]
  21. YuW.Q. JiN.F. DingM.D. GuC.J. MaY. WuZ.Z. WangY.L. WuC.J. DaiG.H. ChenY. JinR.R. TanY.B. YangZ. ZhouD.M. XianJ.C. XuH.T. HuangM. Characteristics of H7N9 avian influenza pneumonia: A retrospective analysis of 17 cases.Intern. Med. J.20205091115112310.1111/imj.1468531707755
    [Google Scholar]
  22. WangD. ZhuW. YangL. ShuY. The epidemiology, virology, and pathogenicity of human infections with avian influenza viruses.Cold Spring Harb. Perspect. Med.2021114a03862010.1101/cshperspect.a03862031964651
    [Google Scholar]
  23. SuS. BiY. WongG. GrayG.C. GaoG.F. LiS. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China.J. Virol.201589178671867610.1128/JVI.01034‑1526063419
    [Google Scholar]
  24. CoxN.J. TrockS.C. UyekiT.M. Public health implications of animal influenza virusesJohn Wiley & Sons, Inc.Hoboken, New Jersey20166374910.1002/9781118924341.ch5
    [Google Scholar]
  25. RayK. PotdarV.A. CherianS.S. PawarS.D. JadhavS.M. WaregaonkarS.R. JoshiA.A. MishraA.C. Characterization of the complete genome of influenza A (H5N1) virus isolated during the 2006 outbreak in poultry in India.Virus Genes200836234535310.1007/s11262‑007‑0195‑818214665
    [Google Scholar]
  26. ChmielewskiR. SwayneD.E. Avian influenza: Public health and food safety concerns.Annu. Rev. Food Sci. Technol.201121375710.1146/annurev‑food‑022510‑13371022129374
    [Google Scholar]
  27. KanaujiaR. BoraI. RathoR.K. ThakurV. MohiG.K. ThakurP. Avian influenza revisited: Concerns and constraints.Virusdisease202233445646510.1007/s13337‑022‑00800‑z36320191
    [Google Scholar]
  28. Andeshnagar BreedsCentral Cattle Breeding Farm. https://dahd.nic.in/sites/default/filess/Action%20Plan%20-%20as%20on23.3.15.docx-final.pdf10.pdf 2024
  29. Avian Influenza A (H9N2) - India. https://www.eswi.org/cnt/article/avian-influenza-h9n2-india-1393 2024
  30. LyH. Recent global outbreaks of highly pathogenic and low-pathogenicity avian influenza A virus infections. VirulenceTaylor & FrancisOxfordshire, UK202415(1)238347810.1080/21505594.2024.238347839054655
    [Google Scholar]
  31. SatapathyA. YadavN. SatapathyT. H9N2: A mysterious avian influenza virus: A global threat for respiratory pneumonia.Res. J. Pharmacol. Pharmacodyn.202416212713310.52711/2321‑5836.2024.00023
    [Google Scholar]
  32. DhingraM.S. ArtoisJ. DellicourS. LemeyP. DauphinG. Von DobschuetzS. Van BoeckelT.P. CastellanD.M. MorzariaS. GilbertM. Geographical and historical patterns in the emergences of novel highly pathogenic avian influenza (HPAI) H5 and H7 viruses in poultry.Front. Vet. Sci.201858410.3389/fvets.2018.0008429922681
    [Google Scholar]
  33. BarrD. KellyA.P. BadmanR.T. Avian influenza on a multi-age chicken farm.Aust. Vet. J.198663619519610.1111/j.1751‑0813.1986.tb02976.x3767801
    [Google Scholar]
  34. BrüssowH. Avian influenza virus cross‐infections as test case for pandemic preparedness: From epidemiological hazard models to sequence‐based early viral warning systems.Microb. Biotechnol.2024171e1438910.1111/1751‑7915.1438938227348
    [Google Scholar]
  35. RöhmC. SüssJ. PohleV. WebsterR.G. Different hemagglutinin cleavage site variants of H7N7 in an influenza outbreak in chickens in Leipzig, Germany.Virology1996218125325710.1006/viro.1996.01878615031
    [Google Scholar]
  36. NaeemK. HussainM. An outbreak of avian influenza in poultry in Pakistan.Vet. Rec.19951371743910.1136/vr.137.17.4398560706
    [Google Scholar]
  37. CapuaI. MarangonS. CancellottiF.M. The 1999-2000 avian influenza (H7N1) epidemic in Italy.Vet. Res. Commun.200327Suppl. 112312710.1023/B:VERC.0000014128.68876.3114535379
    [Google Scholar]
  38. RojasH. de OcaM.M. CaroD. Avian influenza in poultry in Chile.Pathogens20021210125210.3390/pathogens1210125237887768
    [Google Scholar]
  39. TangC.Y. RameshA. WanX-F. Avian and swine influenza viruses. Molecular Medical Microbiology.Amsterdam, NetherlandsElsevier20242375241110.1016/B978‑0‑12‑818619‑0.00093‑9
    [Google Scholar]
  40. KangM. WangL.F. SunB.W. WanW.B. JiX. BaeleG. BiY.H. SuchardM.A. LaiA. ZhangM. WangL. ZhuY.H. MaL. LiH.P. HaerhengA. QiY.R. WangR.L. HeN. SuS. Zoonotic infections by avian influenza virus: Changing global epidemiology, investigation, and control.Lancet Infect. Dis.2024248e522e53110.1016/S1473‑3099(24)00234‑238878787
    [Google Scholar]
  41. YaoQ. LiuJ. LiuH. ZhouY. HuoM. LiY. GaoY. GeY. One‐health challenge in h9n2 avian influenza: Novel human‐avian reassortment virus in guangdong province, China.Transbound. Emerg. Dis.202420241991393410.1155/2024/9913934
    [Google Scholar]
  42. Reported Human Infections with Avian Influenza A Viruses. https://www.cdc.gov/bird-flu/php/avian-flu-summary/reported-human-infections.html 2024
  43. H5N1 from Louisiana patient shows adaptation to human upper respiratory tract. https://www.poultrymed.com/Infectious-Diseases-2024 2024
  44. Avian influenza A (H7N9). https://www.who.int/emergencies/situations/avian-influenza-a-(h7n9)-virus-outbreak 2024
  45. Avian influenza subtype A(HxNy) normally spreads in birds but can also infect humans. https://www.who.int/westernpacific/wpro-emergencies/surveillance/avian-influenza 2024
  46. Avian Influenza (Bird Flu). https://www.cdc.gov/bird-flu/about/index.html 2024
  47. CarnacciniS. PerezD.R. H9 influenza viruses: An emerging challenge.Cold Spring Harb. Perspect. Med.2020106a03858810.1101/cshperspect.a03858831871234
    [Google Scholar]
  48. NagyA. MettenleiterT.C. AbdelwhabE.M. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa.Epidemiol. Infect.2017145163320333310.1017/S095026881700257629168447
    [Google Scholar]
  49. GuanY. ShortridgeK.F. KraussS. WebsterR.G. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?Proc. Natl. Acad. Sci. USA199996169363936710.1073/pnas.96.16.936310430948
    [Google Scholar]
  50. PeacockT.P. JamesJ. SealyJ.E. IqbalM. J.J., Sealy JE, Iqbal M. A global perspective on H9N2 avian influenza virus.Viruses201911762010.3390/v1107062031284485
    [Google Scholar]
  51. SagongM. LeeK.N. LeeE.K. KangH. ChoiY.K. LeeY.J. Current situation and control strategies of H9N2 avian influenza in South Korea.J. Vet. Sci.2023241e510.4142/jvs.2221636560837
    [Google Scholar]
  52. TanM. ZengX. XieY. LiX. LiuJ. YangJ. YangL. WangD. Reported human infections of H9N2 avian influenza virus in China in 2021.Front. Public Health202311125596910.3389/fpubh.2023.125596938155898
    [Google Scholar]
  53. ChanR.W.Y. ChanL.L.Y. MokC.K.P. LaiJ. TaoK.P. ObadanA. ChanM.C.W. PerezD.R. PeirisJ.S.M. NichollsJ.M. Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release.Sci. Rep.201771620810.1038/s41598‑017‑05853‑528740108
    [Google Scholar]
  54. Avian Influenza A(H9N2) - Viet Nam. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON514 2024
  55. GirardM.P. TamJ.S. AssossouO.M. KienyM.P. The 2009 A (H1N1) influenza virus pandemic: A review.Vaccine201028314895490210.1016/j.vaccine.2010.05.03120553769
    [Google Scholar]
  56. AlamM. NandiS. Current drug design strategies for fighting against swine influenza.Curr. Drug Ther.2017122839610.2174/1574885512666170504121055
    [Google Scholar]
  57. MairC.M. LudwigK. HerrmannA. SiebenC. Receptor binding and pH stability — How influenza A virus hemagglutinin affects host-specific virus infection.Biochim. Biophys. Acta Biomembr.2014183841153116810.1016/j.bbamem.2013.10.00424161712
    [Google Scholar]
  58. PattnaikG.P. ChakrabortyH. Entry inhibitors: Efficient means to block viral infection.J. Membr. Biol.2020253542544410.1007/s00232‑020‑00136‑z32862236
    [Google Scholar]
  59. McAuleyJ.L. GilbertsonB.P. TrifkovicS. BrownL.E. McKimm-BreschkinJ.L. Influenza virus neuraminidase structure and functions.Front. Microbiol.2019103910.3389/fmicb.2019.0003930761095
    [Google Scholar]
  60. AnuwongcharoenN. ShoombuatongW. TantimongcolwatT. PrachayasittikulV. NantasenamatC. Exploring the chemical space of influenza neuraminidase inhibitors.PeerJ20164e195810.7717/peerj.195827114890
    [Google Scholar]
  61. LiuY. LouZ. BartlamM. RaoZ. Structure-function studies of the influenza virus RNA polymerase PA subunit.Sci. China C Life Sci.200952545045810.1007/s11427‑009‑0060‑119471867
    [Google Scholar]
  62. EichbergJ. MaiwormE. OberpaulM. Czudai-MatwichV. LüddeckeT. VilcinskasA. HardesK. Antiviral potential of natural resources against influenza virus infections.Viruses20221411245210.3390/v1411245236366550
    [Google Scholar]
  63. ScottC. Structure-guided design of novel inhibitors targeting the drug-resistant M2 proton channel from pandemic “swine” influenza.PLoS One201052e938810.1371/journal.pone.000938820186344
    [Google Scholar]
/content/journals/aia/10.2174/0122113525351925250121103042
Loading
/content/journals/aia/10.2174/0122113525351925250121103042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Avian influenza virus; haemagglutinin; HPAI; LPAI; neuraminidase; pandemic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test