Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

This study explores the antimicrobial, antifungal, and insecticidal properties of essential oil, examining its potential uses in the fields of pharmacology and agriculture.

Materials and Methods

The essential oil obtained by hydrodistillation was studied by GC and GC/MS. The antibacterial capacity of the essential oil was determined against two Gram-positive and three Gram-negative bacterial species. The antifungal activity of the essential oil was investigated against two fungi responsible for many fruit and vegetable diseases. The insecticidal activity of essential oil was evaluated against larvae, pupae, and adult flies of .

Results

The GC and GC-MS analysis of the essential oil of the roots of revealed the predominant presence of davanoids, representing more than 80% of its chemical composition. The results of the disc diffusion test showed significant antimicrobial activity. The essential oil inhibited the growth of (25 mm), (18 mm), and (17 mm), with inhibition diameters comparable to those of gentamicin. The essential oil significantly inhibited mycelial growth, with up to 98% inhibition for and 73% for at 8 µL/mL. Insecticidal activity was most pronounced on adult flies, followed by pupae and finally larvae.

Conclusion

Tests on the essential oils of revealed promising characteristics as insecticidal, antifungal, and antimicrobial agents. These results could be used in the development of new solutions to control pathogens responsible for plant diseases and mycotoxin-producing organisms.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525339409241003080558
2024-11-08
2025-12-08
Loading full text...

Full text loading...

References

  1. Bittner FialováS. RendekováK. MučajiP. NagyM. SlobodníkováL. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering european legislation and folk medicine-a review.Int. J. Mol. Sci.202122191074610.3390/ijms221910746 34639087
    [Google Scholar]
  2. De OliveiraD.M.P. FordeB.M. KiddT.J. HarrisP.N.A. SchembriM.A. BeatsonS.A. PatersonD.L. WalkerM.J. Antimicrobial resistance in ESKAPE pathogens.Clin. Microbiol. Rev.2020333e00181e1910.1128/CMR.00181‑19 32404435
    [Google Scholar]
  3. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. LinderT. WawroschC. UhrinP. TemmlV. WangL. SchwaigerS. HeissE.H. RollingerJ.M. SchusterD. BreussJ.M. BochkovV. MihovilovicM.D. KoppB. BauerR. DirschV.M. StuppnerH. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  4. AinsebaN. SoulimaneA. MamiI.R. DibM.E.A. MuselliA. Evaluation of the antioxidant and anti-inflammatory activity of the Anacyclus Valentinus L. Essential oil and its oxygenated fraction.Comb. Chem. High Throughput Screen.202427576577210.2174/1386207326666230418093319 37073659
    [Google Scholar]
  5. Abd-ElgawadM.M.M. The mediterranean fruit fly (diptera: Tephritidae), a key pest of citrus in Egypt.J. Integr. Pest Manag.20211212810.1093/jipm/pmab025
    [Google Scholar]
  6. PawlakK. KołodziejczakM. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production.Sustainability20201213548810.3390/su12135488
    [Google Scholar]
  7. BenyoucefF. DibM.E.A. ArrarZ. CostaJ. MuselliA. Synergistic antioxidant activity and chemical composition of essential oils from thymus fontanesii, artemisia herba-alba and rosmarinus officinalis.J. Appl. Biotechnol. Rep.20185415115610.29252/JABR.05.04.03
    [Google Scholar]
  8. MeratateF. LalaouiA. RebbasK. BelhadadO.K. HammadouN.I. MeratateH. DemirtasI. AkkalS. LaouerH. Chemical composition of the essential oil of Carduncellus Helenioides (Desf.)Hanelt from Algeria.Orient. J. Chem.20163231305131210.13005/ojc/320304
    [Google Scholar]
  9. VázquezF.M. The genus Scolymus Tourn. ex L. (Asteraceae): Taxonomy and distribution, Anales Jard.Bot. Mar.20005883100
    [Google Scholar]
  10. BreretonR.G. Chemometrics: Data analysis for the laboratory and chemical plant.John Wiley & Sons200310.1002/0470863242
    [Google Scholar]
  11. CicchettiE. MerleP. ChaintreauA. Quantitation in gas chromatography: Usual practices and performances of a response factor database.Flavour Fragrance J.200823645045910.1002/ffj.1906
    [Google Scholar]
  12. SanzM.J. TerencioM.C. MañezS. RiosJ.L. SorianoC. A new quercetin-acylglucuronide from Scolymus hispanicus.J. Nat. Prod.199356111995199810.1021/np50101a022
    [Google Scholar]
  13. SemaouiM. MesliF. DibM.E.A. TabtiB. AchiriR. CostaJ. MuselliA. Statistical analysis/theoretical investigations of novel vascular endothelial growth factor of Davanoide from Scolymus grandifloras Desf as potent anti-angiogenic drug properties.J. Biomol. Struct. Dyn.20224093850387010.1080/07391102.2020.1851301 34043938
    [Google Scholar]
  14. BabushokV.I. LinstromP.J. ReedJ.J. ZenkevichI.G. BrownR.L. MallardW.G. SteinS.E. Development of a database of gas chromatographic retention properties of organic compounds.J. Chromatogr. A200711571-241442110.1016/j.chroma.2007.05.044 17543315
    [Google Scholar]
  15. KnorrA. MongeA. StueberM. StratmannA. ArndtD. MartinE. PospisilP. Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry.Anal. Chem.20138523112161122410.1021/ac4011952 24160557
    [Google Scholar]
  16. McLaffertyF. StaufferD. DouglasB. The wiley/nbs registry of mass spectral data.J. Chem. Educ.19896610A256
    [Google Scholar]
  17. NIST mass spectrometry data center standard reference libraries and software.J. Forensic Sci.20236851484149310.1111/1556‑4029.15284 37203286
    [Google Scholar]
  18. AchiriR. BenhamidatL. MamiI.R. DibM.E.A. AissaouiN. CherifC.Z. CherifH.Z. MuselliA. Chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the essential oil and its major component (carlina oxide) of Carlina hispanica roots from Western Algeria.J. Essent. Oil-Bear. Plants20212451113112410.1080/0972060X.2021.2005692
    [Google Scholar]
  19. HosseinzadehL. ShokoohiniaY. ArabM. AllahyariE. MojarrabM. Cytotoxic and apoptogenic sesquiterpenoids from the petroleum ether extract of Artemisia aucheri aerial parts.Iran. J. Pharm. Res.2019181391399 31089373
    [Google Scholar]
  20. ChouhanS. SharmaK. GuleriaS. Antimicrobial activity of some essential oils present status and future perspectives.Medicines2017435810.3390/medicines4030058 28930272
    [Google Scholar]
  21. FedoulF.F. MeddahB. LarouciM. TouilA.T. MeraziY. BekhtiN. PirasA. FalconieriD. CakmakY.S. Medicinal applications, chemical compositions, and biological effects of an algerian ocimum basilicum l.var genovese; With the conversion of experimental doses to humans.J. Appl. Biotechnol. Rep202292671683
    [Google Scholar]
  22. SenouciH. BenyellesN.G. DibM.E.A. CostaJ. MuselliA. Essential oil of ammoides verticillata as biocides for the control of fungal infections and devastating pest (bactrocera oleae) of olive tree.Recent Pat. Food Nutr. Agric.201910182188
    [Google Scholar]
  23. TianJ. BanX. ZengH. HeJ. HuangB. WangY. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak.Int. J. Food Microbiol.20111452-346447010.1016/j.ijfoodmicro.2011.01.023 21320730
    [Google Scholar]
  24. SinghP. SrivastavaB. KumarA. KumarR. DubeyN.K. GuptaR. Assessment of Pelargonium graveolens oil as plant‐based antimicrobial and aflatoxin suppressor in food preservation.J. Sci. Food Agric.200888142421242510.1002/jsfa.3342
    [Google Scholar]
  25. TanakaN. SteinerL.F. OhinataK. OkamotoR. Low-cost rearing medium for mass production of Oriental and Mediterranean fruit flies.J. Econ. Entomol.196962496796810.1093/jee/62.4.967
    [Google Scholar]
  26. Bouayad AlamS. DibM.E.A. DjabouN. TabtiB. Gaouar BenyellesN. CostaJ. MuselliA. Essential oils as biocides for the control of fungal infections and devastating pest (tuta absoluta) of tomato (lycopersicon esculentumMILL.).Chem. Biodivers.2017147e170006510.1002/cbdv.201700065 28422413
    [Google Scholar]
  27. SipmaG. van der WalB. The structure of davanone a new sesquiterpene from davana: (Artemisia pallens, Wall.).Recl. Trav. Chim. Pays Bas196887671572010.1002/recl.19680870613
    [Google Scholar]
  28. RustaiyanA. MasoudiS. KazemiM. Volatile oils constituents from different parts of Artemisia ciniformis Krasch. Et M. Pop. ex Poljak and Artemisia incana (L.) Druce. from Iran.J. Essent. Oil Res.200719654855110.1080/10412905.2007.9699328
    [Google Scholar]
  29. RustaiyanA. Tabatabaei-AnarakiM. KazemiM. MasoudiS. MakipourP. Chemical composition of essential oil of three Artemisia species growing wild in Iran: Artemisia kermanensis Podl., A. kopetdaghensis Krasch., M.Pop et Lincz. ex Poljak., and A. haussknechtii Boiss.J. Essent. Oil Res.200921541041310.1080/10412905.2009.9700205
    [Google Scholar]
  30. RamezaniM. BehravanJ. YazdinezhadA. Chemical composition and antimicrobial activity of the volatile oil of Artemisia khorassanica. from Iran.Pharm. Biol.200542859960210.1080/13880200490902482
    [Google Scholar]
  31. BarotyG.S.E. GodaH.M. KhalifaE.A. Antimicrobial and antioxidant activities of leaves and flowers essential oils of Egyptian Lantana camara L.Pharma Chem.201466246255
    [Google Scholar]
  32. SaikiaA.K. SahooR.K. Chemical composition and antibacterial activity of essential oil of Lantana camara L. J.Sci. Res20118599602
    [Google Scholar]
  33. VajsV. TrifunovicS. JanackovicP. SokovicM. MilosavljevicS. TesevicV. Antifungal activity of davanone-type sesquiterpenes from Artemisia lobelli var. conescens.J. Serb. Chem. Soc.2004691196997210.2298/JSC0411969V
    [Google Scholar]
  34. SchmidtE. BailS. FriedlS.M. JirovetzL. BuchbauerG. WannerJ. DenkovaZ. SlavchevA. StoyanovaA. GeisslerM. Antimicrobial activities of single aroma compounds.Nat. Prod. Commun.2010591934578X100050010.1177/1934578X1000500906 20922992
    [Google Scholar]
/content/journals/aia/10.2174/0122113525339409241003080558
Loading
/content/journals/aia/10.2174/0122113525339409241003080558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test