Skip to content
2000
Volume 23, Issue 4
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background

Human papillomavirus infection, a prevalent global sexually transmitted disease, is linked to various malignancies like cervical cancer, head-and-neck squamous cell carcinoma, and anal cancer. Researchers are actively exploring phytoconstituents from medicinal plants.

Objective

This study aims to assess the anti-human papillomavirus capabilities of phytochemical compounds sourced from and plants.

Methodology

Through studies, the anti-human papillomavirus capabilities of these compounds were assessed, focusing on their binding affinity to viral E6 protein. Phytochemicals absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis gauged drug-likeness and toxicity.

Results

Notably, compounds like Tinosporaside, β-sitosterol, β-sitosteryl-D-glucoside, botulin, ∞-amyrin, and ß-amyrin exhibited strong binding affinity.

Conclusion

These findings provide insights for drug design, encouraging further and analyses.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525324132241121064908
2024-12-18
2025-08-27
Loading full text...

Full text loading...

References

  1. BermanT.A. SchillerJ.T. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases.Cancer2017123122219222910.1002/cncr.30588 28346680
    [Google Scholar]
  2. JalilA.T. KarevskiyA. The cervical cancer (CC) epidemiology and human papillomavirus (HPV) in the Middle East.Int. J. Environ. Sci. Educ.202022712
    [Google Scholar]
  3. KaarthigeyanK. Cervical cancer in India and HPV vaccination.Indian J. Med. Paediatr. Oncol.201233171210.4103/0971‑5851.96961 22754202
    [Google Scholar]
  4. GiulianoA.R. AnicG. NyitrayA.G. Epidemiology and pathology of HPV disease in males.Gynecol. Oncol.2010117Suppl. 2S15S1910.1016/j.ygyno.2010.01.026 20138345
    [Google Scholar]
  5. Alp AvcıG. Genomic organization and proteins of human papillomavirus.Mikrobiyol. Bul.2012463507515 22951665
    [Google Scholar]
  6. ZhengZ.M. BakerC.C. Papillomavirus genome structure, expression, and post-transcriptional regulation.Front. Biosci.20061112286230210.2741/1971 16720315
    [Google Scholar]
  7. GuptaS. KumarP. DasB.C. HPV: Molecular pathways and targets.Curr. Probl. Cancer201842216117410.1016/j.currproblcancer.2018.03.003 29706467
    [Google Scholar]
  8. KajalV. BooraS. In silico approaches for study the therapeutic potential of Cannabis sativa (Bhang) against HIV. Adv trad.Adv. Tradit. Med.20232428530310.1007/s13596‑023‑00697‑z
    [Google Scholar]
  9. SharmaY. KaushikS. BooraS. KumarP. KumarA. YadavJ.P. KaushikS. Antiviral potential of medicinal plants for the COVID-19.Antiinfect. Agents2022204e25042220402010.2174/2211352520666220425132933
    [Google Scholar]
  10. TambunanU.S. ParikesitA.A. HPV bioinformatics: In silico detection, drug design and prevention agent development.Topics on Cervical Cancer With an Advocacy for Prevention. RajkumarR. Rijeka, CroatiaIntechOpen2012237252
    [Google Scholar]
  11. AliA. AkhtarN. Acacia nilotica: A plant of multipurpose medicinal uses.J. Med. Plants Res.20126914921496
    [Google Scholar]
  12. FarzanaM.U. Al ThariqueI.A. review of ethnomedicine, phytochemical and pharmacological activities of Acacia nilotica (Linn) willd.J. Pharmacogn. Phytochem.2014318490
    [Google Scholar]
  13. HossainM.S. UrbiZ. SuleA. RahmanK.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology.ScientificWorldJournal2014201412810.1155/2014/274905 25950015
    [Google Scholar]
  14. BooraS. KhanA. Antiviral potential of medicinal plants against influenza viruses: A systematic review.RJPT202216315031513
    [Google Scholar]
  15. SabirS.M. ZebA. MahmoodM. AbbasS.R. AhmadZ. IqbalN. Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome.Braz. J. Biol.202181373774010.1590/1519‑6984.230628 32965334
    [Google Scholar]
  16. VariyaB.C. BakraniaA.K. PatelS.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms.Pharmacol. Res.201611118020010.1016/j.phrs.2016.06.013 27320046
    [Google Scholar]
  17. ChandrasekarS.B. BhanumathyM. PawarA.T. SomasundaramT. Phytopharmacology of Ficus religiosa.Pharmacogn. Rev.20104819519910.4103/0973‑7847.70918 22228961
    [Google Scholar]
  18. VenkataramanS. HarinyaS. ChidiutoD.B. RajaR.R. Phytochemical constituents and pharmacological activities of Nyctanthes arbor-tristis.Res. J. Pharm. Technol.201912104639464310.5958/0974‑360X.2019.00798.4
    [Google Scholar]
  19. BaligaM.S. JimmyR ThilakchandK.R. SunithaV. BhatN.R. SaldanhaE. RaoS. RaoP. AroraR. PalattyP.L. Ocimum sanctum L (holy basil or tulsi) and its phytochemicals in the prevention and treatment of cancer.201365Suppl 1263510.1080/01635581.2013.785010
    [Google Scholar]
  20. Amadike UgboguE. EmmanuelO. Ebubechi UcheM. Dike DikeE. Chukwuebuka Okoro, B.; Ibe, C.; Chibueze Ude, V.; Nwabu Ekweogu, C.; Chinyere Ugbogu, O. The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L.Arab. J. Chem.202215510375910.1016/j.arabjc.2022.103759
    [Google Scholar]
  21. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia.Heliyon201959e0243710.1016/j.heliyon.2019.e02437 31701036
    [Google Scholar]
  22. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods8060185 31151279
    [Google Scholar]
  23. FrankL.A. GazziR.P. MelloP.A. ChavesP. PeñaF. BeckR.C.R. BuffonA. PohlmannA.R. GuterresS.S. Anti-HPV nanoemulsified-imiquimod a new and potent formulation to treat cervical cancer.AAPS PharmSciTech20202125410.1208/s12249‑019‑1558‑x 31907712
    [Google Scholar]
  24. NapolitanoL. SchroedlL. KermanA. SheaC.R. Topical cidofovir for benign human papillomavirus–associated skin lesions.Antivir. Ther.2021266-814114610.1177/13596535211059889 35485335
    [Google Scholar]
  25. BalestrieriM. Carnovale-ScalzoC. GarbugliaA.R. ChiantoreM.V. AccardiL. Di BonitoP. Conventional therapy for genital herpesvirus and remission of HPV-related lesions: A case series.Infect. Agent. Cancer20231813610.1186/s13027‑023‑00511‑0 37269015
    [Google Scholar]
  26. HamS. KimK.H. KwonT.H. BakY. LeeD.H. SongY.S. ParkS.H. ParkY.S. KimM.S. KangJ.W. HongJ.T. YoonD.Y. Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells.Oncol. Rep.20143162683269110.3892/or.2014.3157 24789165
    [Google Scholar]
  27. VaniV. VenkateshappaS. NishithaR. ShashidharH. HegdeA.B. AlagumuthuM. In silico analysis of natural inhibitors against HPV E6 protein. Curr. Comput.-.Curr. Computeraided Drug Des.202420330331110.2174/1573409919666230310144550 36896907
    [Google Scholar]
  28. CherryJ.J. RietzA. MalinkevichA. LiuY. XieM. BartolowitsM. DavissonV.J. BalejaJ.D. AndrophyE.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function.PLoS One2013812e8450610.1371/journal.pone.0084506 24376816
    [Google Scholar]
  29. LuP. ZhangT. RenY. RaoH. LeiJ. ZhaoG. WangM. GongD. CaoZ. A literature review on the antiviral mechanism of luteolin.Nat. Prod. Commun.202318410.1177/1934578X231171521
    [Google Scholar]
  30. Ricci-LópezJ. Vidal-LimonA. ZunñigaM. JimènezV.A. AldereteJ.B. BrizuelaC.A. AguilaS. Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein.PLoS One2019143e021302810.1371/journal.pone.0213028 30875378
    [Google Scholar]
  31. DonalisioM. CagnoV. CivraA. GibelliniD. MusumeciG. RittàM. GhoshM. LemboD. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses.J. Ethnopharmacol.201821340340810.1016/j.jep.2017.11.039 29203273
    [Google Scholar]
  32. 24. Luthra, PM.; Singh, R.; Chandra, R. Therapeutic uses of Curcuma longa (turmeric).Indian J. Clin. Biochem.200116215316010.1007/BF02864854 23105311
    [Google Scholar]
  33. KaushikS. DarL. KaushikS. KumarR. KumarD. Parkash YadavJ. In vitro and in silico Anti-dengue activity of Supercritical extract of medicinal plants against Dengue serotype-2.Res. J. Pharm. Technol.202114115895590210.52711/0974‑360X.2021.01025
    [Google Scholar]
  34. SharmaV. KaushikS. PanditP. DhullD. YadavJ.P. KaushikS. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus.Appl. Microbiol. Biotechnol.2019103288189110.1007/s00253‑018‑9488‑1 30413849
    [Google Scholar]
  35. SuhrbierA. Rheumatic manifestations of chikungunya: Emerging concepts and interventions.Nat. Rev. Rheumatol.2019151059761110.1038/s41584‑019‑0276‑9 31481759
    [Google Scholar]
  36. SharmaV. KaushikS. KumarR. YadavJ.P. KaushikS. Emerging trends of Nipah virus: A review.Rev. Med. Virol.2019291e201010.1002/rmv.2010 30251294
    [Google Scholar]
  37. AliS. Nipha Virus outbreak in Bangladesh! Strengthen strategic plans prevents other emerging diseases pandemic in future SVOA.Microbiology2023412728 36690941
    [Google Scholar]
  38. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  39. YunS.I. LeeY.M. Zika virus: An emerging flavivirus.J. Microbiol.201755320421910.1007/s12275‑017‑7063‑6 28243937
    [Google Scholar]
  40. SoniyaK. YadavS. BooraS. KaushikS. YadavJ.P. KaushikS. The Cat Que Virus: A resurfacing orthobunyavirus could lead to epidemics.Virusdisease202132463564110.1007/s13337‑021‑00745‑9 34642639
    [Google Scholar]
  41. BooraS. SharmaV. KaushikS. BhupatirajuA.V. SinghS. KaushikS. Hepatitis B virus-induced hepatocellular carcinoma:A persistent global problem.Braz. J. Microbiol.202354267968910.1007/s42770‑023‑00970‑y 37059940
    [Google Scholar]
  42. KramvisA. ChangK.M. DandriM. FarciP. GlebeD. HuJ. JanssenH.L.A. LauD.T.Y. PenicaudC. PollicinoT. TestoniB. Van BömmelF. AndrisaniO. Beumont-MauvielM. BlockT.M. ChanH.L.Y. ClohertyG.A. DelaneyW.E. GerettiA.M. GehringA. JacksonK. LenzO. MainiM.K. MillerV. ProtzerU. YangJ.C. YuenM.F. ZoulimF. RevillP.A. A roadmap for serum biomarkers for hepatitis B virus: Current status and future outlook.Nat. Rev. Gastroenterol. Hepatol.2022191172774510.1038/s41575‑022‑00649‑z 35859026
    [Google Scholar]
  43. KumarR. NagpalS. KaushikS. MendirattaS. COVID-19 diagnostic approaches: Different roads to the same destination.Virusdisease20203129710510.1007/s13337‑020‑00599‑7 32656306
    [Google Scholar]
  44. BalachandarV. MahalaxmiI. KaavyaJ. VivekanandhanG. AjithkumarS. ArulN. SingaraveluG. Senthil KumarN. Mohana DevS. COVID-19: Emerging protective measures.Eur. Rev. Med. Pharmacol. Sci.202024634223425 32271461
    [Google Scholar]
  45. BooraS. KhanA. SharmaV. KaushikS. MehtaP.K. SinghS. KaushikS. RT-LAMP is a potential future molecular diagnostic tool for influenza A virus.Future Virol.202318316517510.2217/fvl‑2022‑0136
    [Google Scholar]
  46. van de SandL. BormannM. SchmitzY. HeilinglohC.S. WitzkeO. KrawczykA. Antiviral active compounds derived from natural sources against herpes simplex viruses.Viruses2021137138610.3390/v13071386 34372592
    [Google Scholar]
  47. NeelawalaD. RajapakseS. KumbukgollaW.W. Potential of medicinal plants to treat dengue.Int. J. One Health20195869110.14202/IJOH.2019.86‑91
    [Google Scholar]
  48. GoodmanA. HPV testing as a screen for cervical cancer.BMJ2015350jun30 1h237210.1136/bmj.h2372 26126623
    [Google Scholar]
  49. SinghN. HussainS. KakkarN. SinghS.K. SobtiR.C. BharadwajM. Implication of high risk Human papillomavirus HR-HPV infection in prostate cancer in Indian population - A pioneering case-control analysis.Sci. Rep.201551782210.1038/srep07822 25592643
    [Google Scholar]
  50. GomesD. SilvestreS. DuarteA.P. VenutiA. SoaresC.P. PassarinhaL. SousaÂ. In silico approaches: A way to unveil novel therapeutic drugs for cervical cancer management.Pharmaceuticals (Basel)202114874110.3390/ph14080741 34451838
    [Google Scholar]
  51. MuthukalaB.O. SivakumariK.A. AshokK.A. In silico docking of Quercetin compound against the Hela cell line proteins.Int. J. Curr. Pharm. Res.2015711316
    [Google Scholar]
  52. KotadiyaR. GeorrgeJ.J. In silico approach to identify putative drugs from natural products for human papillomavirus (HPV) which cause cervical cancer.Life Sci. Leafl.201562113
    [Google Scholar]
  53. SalariaD. RoltaR. MehtaJ. AwofisayoO. FadareO.A. KaurB. KumarB. Araujo da CostaR. ChandelS.R. KaushikN. ChoiE.H. KaushikN.K. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach.PLoS One2022173e026542010.1371/journal.pone.0265420 35298541
    [Google Scholar]
  54. VaishnavK. GeorgeL.B. HighlandH. Preliminary evaluation of in vitro antiproliferative activity and apoptotic induction by Tinospora cordifolia miers ex hook f& thomas on hela human cervical cancer cells.Int. J. Biotechnol. Biomed. Sci.2015111015
    [Google Scholar]
  55. MahataS. PandeyA. ShuklaS. TyagiA. HusainS.A. DasB.C. BhartiA.C. Anticancer activity of Phyllanthus emblica Linn. (Indian Gooseberry): Inhibition of transcription factor AP-1 and HPV gene expression in cervical cancer cells.Nutr. Cancer201365Suppl. 1889710.1080/01635581.2013.785008 23682787
    [Google Scholar]
  56. ChoudhariA.S. SuryavanshiS.A. Kaul-GhanekarR. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive).PLoS One201387e7012710.1371/journal.pone.0070127 23922932
    [Google Scholar]
  57. GraceV.M.B. B, L.; Wilson, D.D. The effect of Indian fig fruit extract on human papilloma virus containing cervical cancer cells (HeLa) by decreasing the HPV18 L1 gene load.Asian Pac. J. Cancer Prev.202122378579110.31557/APJCP.2021.22.3.785 33773542
    [Google Scholar]
  58. FangkhamS. EkalaksanananT. AromdeeC. SeubsasanaS. KongyingyoesB. PatarapadungkitN. PientongC. The effect of andrographolide on Human papillomavirus type 16 (HPV16) positive cervical cancer cells (SiHa).Int. J. Infect. Dis.201216e8010.1016/j.ijid.2012.05.192
    [Google Scholar]
  59. EkalaksanananT. SookmaiW. FangkhamS. PientongC. AromdeeC. SeubsasanaS. KongyingyoesB. Activity of andrographolide and its derivatives on HPV16 pseudovirus infection and viral oncogene expression in cervical carcinoma cells.Nutr. Cancer201567468769610.1080/01635581.2015.1019630 25837567
    [Google Scholar]
  60. ShuklaD.P. ShahK.P. RawalR.M. JainN.K. Anticancer and cytotoxic potential of turmeric (Curcuma longa), neem (Azadirachta indica), tulasi (Ocimum sanctum) and ginger (Zingiber officinale) extracts on HeLa cell line. Int. J. Life-Sci.Scient. Res.20162430931510.21276/ijlssr.2016.2.4.2
    [Google Scholar]
  61. SadeghiR.V. ParsaniaM. SadeghizadehM. HaghighatS. FarsaniS.S. The comparison of curcumin and nanocurcumin effects on the expression of E6 and E7 human papilloma virus oncogenes and P53 and pRb factors in HeLa and fibroblast cell lines.Res. Sq.202110.21203/rs.3.rs‑254954/v1
    [Google Scholar]
/content/journals/aia/10.2174/0122113525324132241121064908
Loading
/content/journals/aia/10.2174/0122113525324132241121064908
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test