Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Volume 25, Issue 8, 2025
Volume 25, Issue 8, 2025
-
-
Targeting Ferroptosis: Small-molecule Inducers as Novel Anticancer Agents
Authors: Shihao Jin, Huannan Wang, Zhen Zhang and Maocai YanFerroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, is increasingly recognized for its role in cancer development and as a potential therapeutic target. This review consolidates insights into the molecular mechanisms underpinning ferroptosis and evaluates the therapeutic potential of small-molecule inducers, such as erastin, RSL3, sulfasalazine, and sorafenib, which selectively trigger ferroptosis in cancer cells. It highlights the distinct morphological and molecular signatures of ferroptosis, its complex interplay with iron, lipid, and amino acid metabolic pathways, and the resultant implications for cancer treatment strategies. Strategic manipulation of the ferroptosis pathway offers a groundbreaking approach to cancer treatment, potentially circumventing the resistance that cancers develop against traditional apoptosis-inducing agents. Furthermore, it also emphasizes the necessity of refining these small molecules for clinical application and exploring their synergistic potential when combined with current therapies to augment overall treatment efficacy and improve patient outcomes. Ferroptosis thus emerges as a promising avenue in the realm of cancer therapy. Moving forward, research endeavors should focus on a more nuanced understanding of the interconnections between ferroptosis and other cell death modalities. Additionally, comprehensive evaluations of the long-term safety and therapeutic indices of the involved compounds are imperative. Such investigations are poised to herald a transformative shift in the paradigm of oncology, paving the way for innovative and targeted interventions.
-
-
-
The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications
Authors: Haodong He, Jingjie Yang, Yan Zhou, Xinyan Zheng, Lihan Chen, Zhujun Mao, Chuyuan Liao, Tongtong Li, Haoran Liu, Gang Zhou, Houdong Li and Chengfu YuanLong non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and in vivo investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.
-
-
-
Heavy Metals Alter the Anti-cancer Potency of Medicinal Plants
Authors: Amber Rizwan, Aatiquah Aqeel, Aisha Idris and Humaira FarooqiThis review investigates the outcome of heavy metal contamination on the anti-cancer properties of medicinal plants. Heavy metal pollution is a significant environmental concern globally, often found in soil and water due to industrial activities. Therapeutic plants are recognized because of their therapeutic attributes and their ability to absorbing these contaminants. This study examines how heavy metal exposure modifies the chemical composition and efficacy of medicinal plants against cancer cells. Through a comprehensive review of existing literature and experimental analysis, we explore the mechanisms by which heavy metals interact with bioactive compounds in medicinal plants, affecting their anti-cancer potency. Findings reveal intricate interactions among heavy metals and phytochemicals, leading to variations in cytotoxicity against cancer cells. Comprehending these interactions is crucial for optimizing the utilization of medicinal plants in cancer treatment and for developing approaches to alleviate the impacts of heavy metal contamination on their therapeutic potential. The urgency of this issue cannot be overstated, as it directly impacts our ability to effectively treat cancer and preserve our environment.
-
-
-
Screening and in vitro Biological Evaluation of Novel Multiple Tyrosine Kinases Inhibitors as Promising Anticancer Agents
Authors: Xiuying Li, Pinglang Ruan, Gang Jiang and Weidong ZhangBackgroundTyrosine kinases have emerged as key stimulatory drivers in several cancer-related pathways. This is particularly evident in non-small cell lung cancer with regulating cell growth and apoptosis and so on. Tyrosine kinase inhibitors (TKI) are one breakthrough option that could improve the life quality of cancer patients.
ObjectiveThis study aims to find more effective tyrosine kinase inhibitors.
MethodsIn this study, natural products from TargetMol that may be the potential TKI for lung cancer were screened through structure-based virtual screening and experimental validation. Moreover, the binding between the hit compounds and tyrosine kinase was explored.
ResultsFrom the study findings, Gramicidin and Tannic acid have strong interactions with the four tyrosine kinases (ALK, TRK, MET, and ABL), and this could significantly inhibit the viability of A549 cells in a concentration-dependent manner.
ConclusionThese findings indicated that Gramicidin and Tannic acid might be potential multiple TKI and are promising anticancer agents that call for further study.
-
-
-
Discovery of a Novel Co-crystal of Chrysin and Oroxylin A with Anticancer Properties from Leaves of Oroxylum indicum
BackgroundAs the number of new cancer cases increases every year, there is a necessity to develop new drugs for the treatment of different types of cancers. Plants' resources are considered to be huge reservoirs for therapeutic agents in nature. Among all the medicinal plants, Oroxylum indicum is one of the most widely used medicinal plants in India, China, and Southeast Asian countries. Combinatorial drug treatment, on the other hand, is favored over single drug treatment in order to target multiple biomolecular moieties that help in the growth and development of cancer. Therefore, combinatorial drug treatment using a co-crystal of multiple drugs gives researchers an idea of the development of a new type of drug for targeting multiple targets. In this study, a new co-crystal of chrysin and oroxylin A was isolated from the leaves of O. indicum, and its anticancer properties were studied in cervical cancer cells HeLa.
AimThis study was conducted with the aim of identifying new anticancer compounds from the leaves of Oroxylum indicum and studying the anticancer properties of the isolated compound.
ObjectiveIn this study, we elucidated the structure of a new co-crystal compound, which was isolated from the leaf extract of Oroxylum indicum. The apoptosis induction mechanism of the newly discovered co-crystal in HeLa cells was also studied.
MethodsA crystal compound from the chloroform extract of leaves of Oroxylum Indicum was isolated by solvent fractionation and chromatographic methods involving HPLC. The molecular structure of the isolated crystal was elucidated by Single Crystal-XRD, FT-IR analysis, and further determined by LC-MS. The antiproliferative activity was carried out using an MTT assay and fluorescence microscopy, and the mechanism of apoptosis was determined using Western blotting techniques.
ResultsThe novel co-crystal consists of two active pharmaceutical ingredients (APIs) in a 1:1 ratio, i.e., oroxylin A and chrysin. The isolated new co-crystal induced death in HeLa cells with a very low IC50 value of 8.49 µM. It induced caspase-dependent apoptosis in HeLa cells by activation of Caspase-3 through inhibition of ERKs and activation of p38 of MAPK cell signalling pathway.
ConclusionThis study presents the first report on the discovery of a naturally occurring co-crystal of chrysin and oroxylin A and the involvement of ERKs and p38 of MAPK pathways in the induction of apoptosis in HeLa cells by the co-crystal. Our study sheds light on the development of a co-crystal of chrysin and oroxylin A in a specific ratio of 1:1 for combination therapy of the two APIs. The purified co-crystal was found to be more efficient compared to the compounds present individually. Further analysis of the physiochemical properties and molecular mechanisms of the isolated co-crystal in different cancer cells is warranted for its application in therapeutics.
-
-
-
Observation on the Therapeutic Efficacy of Camrelizumab Combined with Chemotherapy in Non-small Cell Lung Cancer and the Cutaneous Immune-related Adverse Events: A Retrospective Study
Authors: Hongmei Wang, Jiali Xia, Aoyang Yu, Menghan Cao, Yang Zhao, Xiaobing Qin, Wenlou Liu, Zhengxiang Han and Guan JiangIntroductionImmunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.
MethodsData of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023. Cutaneous irAEs were monitored using CTCAE v5.0, and therapeutic efficacy was assessed using RECIST 1.1 criteria for ORR and PFS. Multivariable Cox regression analysis identified independent predictors of PFS, and a nomogram was constructed to predict survival outcomes.
ResultsData from 151 patients were analyzed. Significant differences in the objective response rate (ORR, P = 0.016) and progression-free survival (PFS, P < 0.0001) were detected between NSCLC patients, either with cirAEs or not. Besides, PFS was significantly different in NSCLC patients who were subgrouped by the time of first cutaneous irAEs occurrence (P = 0.011), duration of cutaneous irAEs (P = 0.002), grade of cutaneous irAEs (P = 0.002), the number of cutaneous irAEs(P = 0.021). The multivariable analysis also revealed that cirAEs were positively associated with survival outcomes (HR: 0.316, 95% CI, 0.193- 0.519, P<0.001) for PFS. The nomogram was formulated based on the results of multivariate analysis and validated using an internal bootstrap resampling approach, which showed that the nomogram exhibited a sufficient level of discrimination according to the C-index 0.80 (95% CI, 0.748-0.850).
ConclusionThe presence of cirAEs in NSCLC patients treated with camrelizumab combined with chemotherapy is indicative of better treatment efficacy and prognosis. This study supports the utility of cirAEs as biomarkers for predicting the validity of immunotherapy in NSCLC. It proposes a novel, multi-parameter prognostic model to assess patient outcomes more accurately.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
