Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Immunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.

Methods

Data of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023. Cutaneous irAEs were monitored using CTCAE v5.0, and therapeutic efficacy was assessed using RECIST 1.1 criteria for ORR and PFS. Multivariable Cox regression analysis identified independent predictors of PFS, and a nomogram was constructed to predict survival outcomes.

Results

Data from 151 patients were analyzed. Significant differences in the objective response rate (ORR, = 0.016) and progression-free survival (PFS, < 0.0001) were detected between NSCLC patients, either with cirAEs or not. Besides, PFS was significantly different in NSCLC patients who were subgrouped by the time of first cutaneous irAEs occurrence ( = 0.011), duration of cutaneous irAEs ( = 0.002), grade of cutaneous irAEs ( = 0.002), the number of cutaneous irAEs( = 0.021). The multivariable analysis also revealed that cirAEs were positively associated with survival outcomes (HR: 0.316, 95% CI, 0.193- 0.519, <0.001) for PFS. The nomogram was formulated based on the results of multivariate analysis and validated using an internal bootstrap resampling approach, which showed that the nomogram exhibited a sufficient level of discrimination according to the C-index 0.80 (95% CI, 0.748-0.850).

Conclusion

The presence of cirAEs in NSCLC patients treated with camrelizumab combined with chemotherapy is indicative of better treatment efficacy and prognosis. This study supports the utility of cirAEs as biomarkers for predicting the validity of immunotherapy in NSCLC. It proposes a novel, multi-parameter prognostic model to assess patient outcomes more accurately.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206350978241105080452
2025-01-07
2025-04-25
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. GodingS.A. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.21601 32133645
    [Google Scholar]
  2. ZappaC. MousaS.A. Non-small cell lung cancer: Current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.07 27413711
    [Google Scholar]
  3. PlanchardD. PopatS. KerrK. NovelloS. SmitE.F. Faivre-FinnC. ESMO Guidelines committeeMetastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201829Suppl. 4iv192iv23710.1093/annonc/mdy275
    [Google Scholar]
  4. WoodD.E. National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening.Thorac. Surg. Clin.201525218519710.1016/j.thorsurg.2014.12.003 25901562
    [Google Scholar]
  5. RibasA. WolchokJ.D. Cancer immunotherapy using checkpoint blockade. Science (NY).Science201835963821350135510.1126/science.aar4060 29567705
    [Google Scholar]
  6. ParkY-J. KuenD-S. ChungY. Future prospects of immune checkpoint blockade in cancer: From response prediction to overcoming resistance.Exp. Mol. Med.201850811310.1038/s12276‑018‑0130‑1
    [Google Scholar]
  7. GeislerA.N. PhillipsG.S. BarriosD.M. WuJ. LeungD.Y.M. MoyA.P. KernJ.A. LacoutureM.E. Immune checkpoint inhibitor–related dermatologic adverse events.J. Am. Acad. Dermatol.20208351255126810.1016/j.jaad.2020.03.132 32454097
    [Google Scholar]
  8. SibaudV. MeyerN. LamantL. VigariosE. MazieresJ. DelordJ. P Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies.Curr. Opin. Oncol.201628425426310.1097/CCO.0000000000000290
    [Google Scholar]
  9. SchweizerC. SchubertP. RutznerS. EcksteinM. HaderleinM. LettmaierS. Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy.Eur. J. Cancer2020140556210.1016/j.ejca.2020.09.001 33045663
    [Google Scholar]
  10. CaoT. ZhouX. WuX. ZouY. Cutaneous immune-related adverse events to immune checkpoint inhibitors: From underlying immunological mechanisms to multi-omics prediction.Front. Immunol.202314120754410.3389/fimmu.2023.1207544
    [Google Scholar]
  11. MarkhamA. KeamS.J. Camrelizumab: First global approval.Drugs201979121355136110.1007/s40265‑019‑01167‑0 31313098
    [Google Scholar]
  12. ChenY. PeiY. LuoJ. HuangZ. YuJ. MengX. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: A Comparison in basic structure, function, and clinical practice.Front. Immunol.202011108810.3389/fimmu.2020.01088
    [Google Scholar]
  13. EttingerD.S. WoodD.E. AisnerD.L. AkerleyW. BaumanJ.R. BharatA. BrunoD.S. ChangJ.Y. ChirieacL.R. D’AmicoT.A. DillingT.J. DowellJ. GettingerS. GubensM.A. HegdeA. HennonM. LacknerR.P. LanutiM. LealT.A. LinJ. LooB.W.Jr LovlyC.M. MartinsR.G. MassarelliE. MorgenszternD. NgT. OttersonG.A. PatelS.P. RielyG.J. SchildS.E. ShapiroT.A. SinghA.P. StevensonJ. TamA. YanagawaJ. YangS.C. GregoryK.M. HughesM. NCCN guidelines insights: Non–small cell lung cancer, Version 2.2021.J. Natl. Compr. Canc. Netw.202119325426610.6004/jnccn.2021.0013 33668021
    [Google Scholar]
  14. RenS. ChenJ. XuX. JiangT. ChengY. Chen, G Camrelizumab plus Carboplatin and Paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): A Phase 3 trial.J. Thorac. Oncol.202217454455710.1016/j.jtho.2021.11.018
    [Google Scholar]
  15. Freites-MartinezA. SantanaN. Arias-SantiagoS. VieraA. Using the common terminology criteria for adverse events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies.Actas Dermosifiliogr (Engl Ed).20211121909210.1016/j.ad.2019.05.009
    [Google Scholar]
  16. ZhangS. TangK. WanG. NguyenN. LuC. Ugwu-DikeP. RavalN. SeoJ. AlexanderN.A. JairathR. PhillippsJ. LeungB.W. RosterK. ChenW. ZubiriL. BolandG. ChenS.T. TsaoH. DemehriS. LeBoeufN.R. ReynoldsK.L. YuK-H. GusevA. KwatraS.G. SemenovY.R. Cutaneous immune-related adverse events are associated with longer overall survival in advanced cancer patients on immune checkpoint inhibitors: A multi-institutional cohort study.J. Am. Acad. Dermatol.20238851024103210.1016/j.jaad.2022.12.048 36736626
    [Google Scholar]
  17. MorimotoK. YamadaT. TakumiC. OguraY. TakedaT. OnoiK. Immune-related adverse events are associated with clinical benefit in patients with non-small-cell lung cancer treated with immunotherapy plus chemotherapy: A retrospective study.Front. Oncol.20211163013610.3389/fonc.2021.630136
    [Google Scholar]
  18. ZhouX. YaoZ. YangH. LiangN. ZhangX. ZhangF. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis.BMC Med.20201818710.1186/s12916‑020‑01549‑2 32306958
    [Google Scholar]
  19. PaderiA. GiorgioneR. GiommoniE. MelaM.M. RossiV. DoniL. Association between immune related adverse events and outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors.Cancers (Basel)202113486010.3390/cancers13040860
    [Google Scholar]
  20. ZhouC. ChenG. HuangY. ZhouJ. LinL. FengJ. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): A randomised, open-label, multicentre, phase 3 trial.Lancet Respir. Med.20219330531410.1016/S2213‑2600(20)30365‑9
    [Google Scholar]
  21. WangR. ShiM. JiM. HanZ. ChenL. LiuY. LuK. LiuL. ChenB. ZhangX. MiaoL. ShuY. Real world experience with camrelizumab in patients with advanced non-small cell lung cancer: A prospective multicenter cohort study (NOAH-LC-101).Transl. Lung Cancer Res.202312478679610.21037/tlcr‑23‑121 37197631
    [Google Scholar]
  22. WongvibulsinS. PahalyantsV. KalinichM. MurphyW. YuK.H. WangF. ChenS.T. ReynoldsK. KwatraS.G. SemenovY.R. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: A United States population-level analysis.J. Am. Acad. Dermatol.202286356357210.1016/j.jaad.2021.03.094 33819538
    [Google Scholar]
  23. TangK. SeoJ. TiuB.C. LeT.K. PahalyantsV. RavalN.S. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy.JAMA Dermatol.2022158218919310.1001/jamadermatol.2021.5476
    [Google Scholar]
  24. MerliM. AccorintiM. RomagnuoloM. MarzanoA. Di ZenzoG. MoroF. AntigaE. MaglieR. CozzaniE. ParodiA. GaspariniG. SollenaP. De SimoneC. CaproniM. PisanoL. FattoreD. BalestriR. SenaP. VezzoliP. TeoliM. ArdigòM. VassalloC. MichelerioA. SattaR.R. DikaE. MelottiB. RiberoS. QuaglinoP. Autoimmune bullous dermatoses in cancer patients treated by immunotherapy: A literature review and Italian multicentric experience.Front. Med. (Lausanne)202310120841810.3389/fmed.2023.1208418 37547602
    [Google Scholar]
  25. SongY. WuJ. ChenX. LinT. CaoJ. LiuY. A single-Arm, multicenter, phase II study of camrelizumab in relapsed or refractory classical Hodgkin Lymphoma.Clin. Cancer Res.201925247363736910.1158/1078‑0432.CCR‑19‑1680 31420358
    [Google Scholar]
  26. HuangJ. MoH. ZhangW. ChenX. QuD. WangX. WuD. WangX. LanB. YangB. WangP. ZhangB. YangQ. JiaoY. XuB. Promising efficacy of SHR‐1210, A novel anti–programmed cell death 1 antibody, in patients with advanced gastric and gastroesophageal junction cancer in China.Cancer2019125574274910.1002/cncr.31855 30508306
    [Google Scholar]
  27. NieJ. WangC. LiuY. YangQ. MeiQ. DongL. Addition of low-dose decitabine to anti-PD-1 Antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma.J. Clin. Oncol.201937171479148910.1200/JCO.18.02151 31039052
    [Google Scholar]
  28. WangF. QinS. SunX. RenZ. MengZ. ChenZ. Reactive cutaneous capillary endothelial proliferation in advanced hepatocellular carcinoma patients treated with camrelizumab: Data derived from a multicenter phase 2 trial.J. Hematol. Oncol.20201314710.1186/s13045‑020‑00886‑2 32393323
    [Google Scholar]
  29. DingQ. LiuY. JuH. SongH. XiaoY. LiuX. Reactive cutaneous capillary endothelial proliferation predicted the efficacy of camrelizumab in patients with recurrent/metastatic head and neck squamous cell carcinoma.Med. Oral Patol. Oral Cir. Bucal2023286e525e910.4317/medoral.25919 37330963
    [Google Scholar]
  30. WuR. JuY. LongT. SuZ. ZhuG. LiuS. Anlotinib improved the reactive cutaneous capillary endothelial proliferation induced by camrelizumab: A case report.Transl. Cancer Res.20221182940294510.21037/tcr‑22‑426 36093549
    [Google Scholar]
  31. LeeW.S. YangH. ChonH.J. KimC. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.Exp. Mol. Med.20205291475148510.1038/s12276‑020‑00500‑y 32913278
    [Google Scholar]
  32. EbelingS. KowalczykA. Perez-VazquezD. MattiolaI. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells.Front. Oncol.2023131171794010.3389/fonc.2023.1171794 37234993
    [Google Scholar]
  33. BurtP. PeineM. PeineC. BorekZ. ServeS. FloßdorfM. HegazyA.N. HöferT. LöhningM. ThurleyK. Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells.Front. Immunol.202213928018010.3389/fimmu.2022.928018 36052070
    [Google Scholar]
  34. RomagnaniS. T-cell subsets (Th1 versus Th2).Ann. Allergy Asthma Immunol.2000851918
    [Google Scholar]
  35. QinZ. BlankensteinT. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells.Immunity2000126677686 10894167
    [Google Scholar]
  36. BasuA. RamamoorthiG. AlbertG. GallenC. BeyerA. SnyderC. KoskiG. DisisM.L. CzernieckiB.J. KodumudiK. Differentiation and regulation of TH cells: A Balancing act for cancer immunotherapy.Front. Immunol.202112669474010.3389/fimmu.2021.669474 34012451
    [Google Scholar]
  37. Ryba-StanisławowskaM. Unraveling Th subsets: Insights into their role in immune checkpoint inhibitor therapy.Cell Oncol. (Dordr.)20241810.1007/s13402‑024‑00992‑0 39325360
    [Google Scholar]
  38. WangW. SungN. Gilman-SachsA. Kwak-KimJ.T. Helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells.Front. Immunol.202011202510.3389/fimmu.2020.02025 32973809
    [Google Scholar]
  39. FrafjordA. BuerL. HammarströmC. AamodtH. WoldbækP.R. BrustugunO.T. HellandÅ. ØynebråtenI. CorthayA. The immune landscape of human primary lung tumors is Th2 skewed.Front. Immunol.20211276459610.3389/fimmu.2021.764596 34868011
    [Google Scholar]
  40. MurailleE. LeoO. MoserM. TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism?Front. Immunol.2014560310.3389/fimmu.2014.00603
    [Google Scholar]
  41. DuraiswamyJ. FreemanG.J. CoukosG. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer.Cancer Res.201373236900691210.1158/0008‑5472.CAN‑13‑1550 23975756
    [Google Scholar]
  42. SeervaiR.N.H. SinhaA. KulkarniR.P. Mechanisms of dermatological toxicities to immune checkpoint inhibitor cancer therapies.Clin. Exp. Dermatol.202247111928194210.1111/ced.15332 35844072
    [Google Scholar]
  43. YangK. LuR. MeiJ. CaoK. ZengT. HuaY. HuangX. LiW. YinY. The war between the immune system and the tumor - using immune biomarkers as tracers.Biomark. Res.20241215110.1186/s40364‑024‑00599‑5 38816871
    [Google Scholar]
  44. GaroL.P. GopalM. Role of cytokines in tumor immunity and immune tolerance to cancer.Cancer Immunology: A Translational Medicine Context.ChamSpringer International Publishing2020205233
    [Google Scholar]
  45. BretscherP. On analyzing how the Th1/Th2 phenotype of an immune response is determined: Classical observations must not be ignored.Front. Immunol.201910123410.3389/fimmu.2019.01234
    [Google Scholar]
  46. DulosJ. CarvenG.J. van BoxtelS.J. EversS. Driessen-EngelsL.J.A. HoboW. GoreckaM.A. de HaanA.F.J. MuldersP. PuntC.J.A. JacobsJ.F.M. SchalkenJ.A. OosterwijkE. van EenennaamH. BootsA.M. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer.J. Immunother.201235216917810.1097/CJI.0b013e318247a4e7 22306905
    [Google Scholar]
  47. LarsabalM. MartiA. JacqueminC. RambertJ. ThiolatD. DoussetL. TaiebA. DutriauxC. PreyS. BonifaceK. SeneschalJ. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death–1 therapies are clinically and biologically distinct from vitiligo.J. Am. Acad. Dermatol.201776586387010.1016/j.jaad.2016.10.044 28094061
    [Google Scholar]
  48. TeraokaS. FujimotoD. MorimotoT. KawachiH. ItoM. SatoY. NagataK. NakagawaA. OtsukaK. UeharaK. ImaiY. IshidaK. FukuokaJ. TomiiK. Early immune-related adverse events and association with outcome in advanced non–small cell lung cancer patients treated with Nivolumab: A prospective cohort study.J. Thorac. Oncol.201712121798180510.1016/j.jtho.2017.08.022 28939128
    [Google Scholar]
  49. ZhangY.C. ZhuT.C. NieR.C. LuL.H. XiangZ.C. XieD. LuoR-Z. CaiM-Y. Association between early immune-related adverse events and survival in patients treated with PD-1/PD-L1 inhibitors.J. Clin. Med.202312373610.3390/jcm12030736
    [Google Scholar]
  50. AsoM. ToiY. SugisakaJ. AibaT. KawanaS. SaitoR. OgasawaraT. TsurumiK. OnoK. ShimizuH. DomekiY. TerayamaK. KawashimaY. NakamuraA. YamandaS. KimuraY. HondaY. SugawaraS. Association between skin reaction and clinical benefit in patients treated with anti-programmed cell death 1 monotherapy for advanced non-small cell lung cancer.Oncologist2020253e536e54410.1634/theoncologist.2019‑0550 32162801
    [Google Scholar]
  51. FujimotoD. YoshiokaH. KataokaY. MorimotoT. KimY.H. TomiiK. Efficacy and safety of nivolumab in previously treated patients with non-small cell lung cancer: A multicenter retrospective cohort study. Lung cancer (Amsterdam, Netherlands).Lung Cancer2018119142010.1016/j.lungcan.2018.02.017 29656747
    [Google Scholar]
  52. SungM. ZerA. WaliaP. KhojaL. MagantiM. LabbeC. ShepherdF.A. BradburyP.A. LiuG. LeighlN.B. Correlation of immune-related adverse events and response from immune checkpoint inhibitors in patients with advanced non-small cell lung cancer.J. Thorac. Dis.20201252706271210.21037/jtd.2020.04.30 32642178
    [Google Scholar]
  53. LiY. ZhangY. JiaX. JiangP. MaoZ. LiangT. DuY. ZhangJ. ZhangG. NiuG. GuoH. Effect of immune-related adverse events and pneumonitis on prognosis in advanced non–small cell lung cancer: A comprehensive systematic review and meta-analysis.Clin. Lung Cancer2021226e889e90010.1016/j.cllc.2021.05.004 34183265
    [Google Scholar]
  54. GuezourN. SoussiG. BrosseauS. AbbarB. NaltetC. VauchierC. PotéN. HachonL. NamourC. KhalilA. TrédanielJ. ZalcmanG. GounantV. Grade 3–4 immune-related adverse events induced by immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) patients are correlated with better outcome: A real-life observational study.Cancers (Basel)20221416387810.3390/cancers14163878 36010872
    [Google Scholar]
  55. WangW. GuX. WangL. PuX. FengH. XuC. LouG. ShaoL. XuY. WangQ. WangS. GaoW. ZhangY. SongZ. The prognostic impact of mild and severe immune-related adverse events in non-small cell lung cancer treated with immune checkpoint inhibitors: A multicenter retrospective study.Cancer Immunol. Immunother.20227171693170310.1007/s00262‑021‑03115‑y 34817639
    [Google Scholar]
  56. ChoiJ. LeeS.Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors.Immune Netw.2020201e910.4110/in.2020.20.e9 32158597
    [Google Scholar]
  57. SternschussM. PeledN. AllenA.M. DudnikE. RotemO. KurmanN. GalO. RechesH. ZerA. Can Ipilimumab restore immune response in advanced NSCLC after progression on anti‐ PD ‐1/PD‐L1 agents?Thorac. Cancer20201182331233410.1111/1759‑7714.13502 32548905
    [Google Scholar]
  58. HasanA.O. DiemS. MarkertE. JochumW. KerlK. FrenchL.E. SpeiserD.E. FrühM. FlatzL. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer.OncoImmunology2016511e123129210.1080/2162402X.2016.1231292 27999741
    [Google Scholar]
  59. WangY. YangM. TaoM. LiuP. KongC. LiH. ChenY. YinX. YanX. Corticosteroid administration for cancer-related indications is an unfavorable prognostic factor in solid cancer patients receiving immune checkpoint inhibitor treatment.Int. Immunopharmacol.20219910803110.1016/j.intimp.2021.108031 34358857
    [Google Scholar]
  60. IranzoP. CallejoA. AssafJ.D. MolinaG. LopezD.E. Garcia-IllescasD. PardoN. NavarroA. Martinez-MartiA. CedresS. CarbonellC. FrigolaJ. AmatR. FelipE. Overview of checkpoint inhibitors mechanism of action: Role of immune-related adverse events and their treatment on progression of underlying cancer.Front. Med. (Lausanne)2022987597410.3389/fmed.2022.875974 35707528
    [Google Scholar]
  61. NadelmannE.R. YehJ.E. ChenS.T. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors.JAMA Oncol.20228113013810.1001/jamaoncol.2021.4318 34709352
    [Google Scholar]
  62. PhillipsG.S. WuJ. HellmannM.D. PostowM.A. RizviN.A. Freites-MartinezA. ChanD. DuszaS. MotzerR.J. RosenbergJ.E. CallahanM.K. ChapmanP.B. GeskinL. LopezA.T. ReedV.A. FabbrociniG. AnnunziataM.C. KukoyiO. PabaniA. YangC.H. ChungW.H. MarkovaA. LacoutureM.E. Treatment outcomes of immune-related cutaneous adverse events.J. Clin. Oncol.201937302746275810.1200/JCO.18.02141 31216228
    [Google Scholar]
  63. GoodmanR.S. JohnsonD.B. BalkoJ.M. Corticosteroids and cancer immunotherapy.Clin. Cancer Res.202329142580258710.1158/1078‑0432.CCR‑22‑3181 36648402
    [Google Scholar]
  64. HuangD.D.R. LiaoB.C. HsuW.H. YangC.Y. LinY.T. WuS.G. TsaiT-H. ChenK-Y. HoC-C. LiaoW-Y. ShihJ-Y. YuC-J. YangJ.C-H. ChengA-L. ShenY-C. Effects of early short-course corticosteroids on immune-related adverse events in non-small cell lung cancer patients receiving immune checkpoint inhibitors.Oncology2024102431832610.1159/000534350 37778345
    [Google Scholar]
  65. NelliF. VirtuosoA. BerriosJ.R.G. GiannarelliD. FabbriA. MarrucciE. RuggeriE.M. Impact of previous corticosteroid exposure on outcomes of patients receiving immune checkpoint inhibitors for advanced non-small cell lung cancer: A retrospective observational study.Cancer Chemother. Pharmacol.202289452953710.1007/s00280‑022‑04416‑4 35301584
    [Google Scholar]
  66. DrakakiA. DhillonP.K. WakeleeH. ChuiS.Y. ShimJ. KentM. DegaonkarV. HoangT. McNallyV. LuhnP. GutzmerR. Association of baseline systemic corticosteroid use with overall survival and time to next treatment in patients receiving immune checkpoint inhibitor therapy in real-world US oncology practice for advanced non-small cell lung cancer, melanoma, or urothelial carcinoma.OncoImmunology202091182464510.1080/2162402X.2020.1824645 33101774
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206350978241105080452
Loading
/content/journals/acamc/10.2174/0118715206350978241105080452
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): camrelizumab; cutaneous irAEs; immunotherapy; lichenoid dermatitis; NSCLC; PD-1; pruritus; RCCEP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test